

THE IMPACT OF RUN-OF-RIVER SMALL HYDROPOWER PLANTS ON BIODIVERSITY IN THE BALKANS

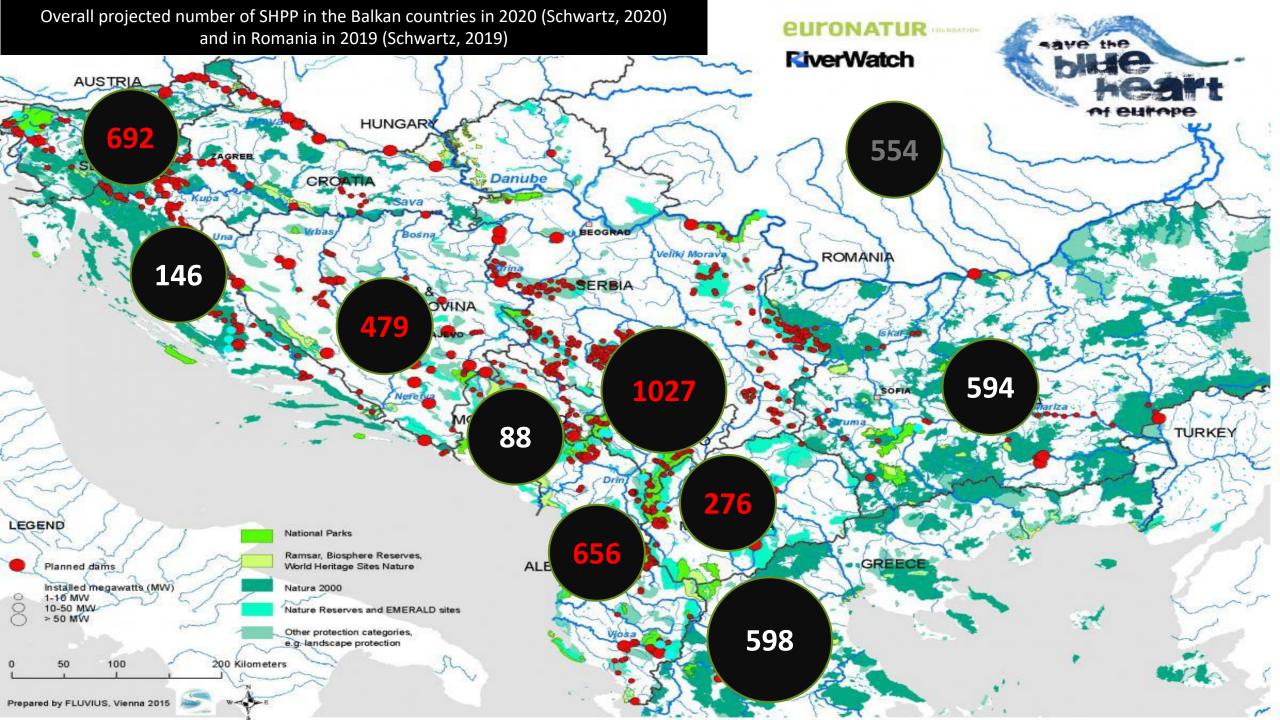
Jelka Crnobrnja-Isailović

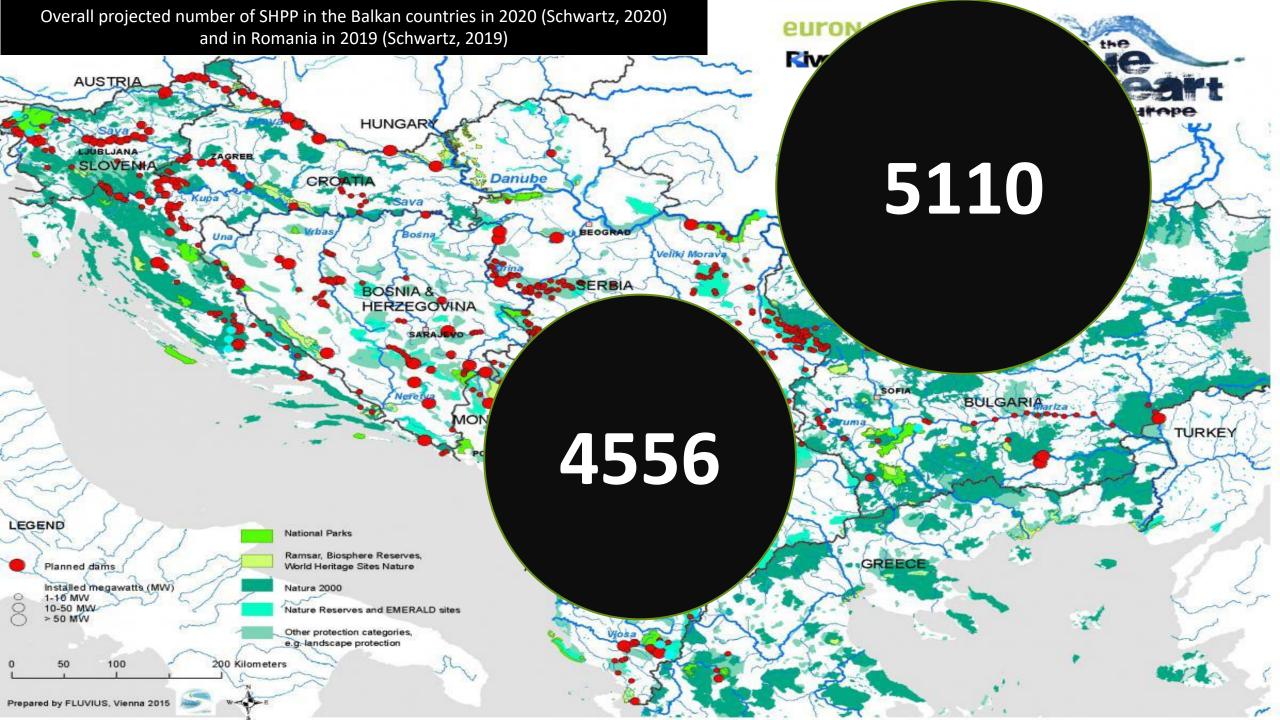
University of Niš, Faculty of Sciences and Mathematics, Serbia;

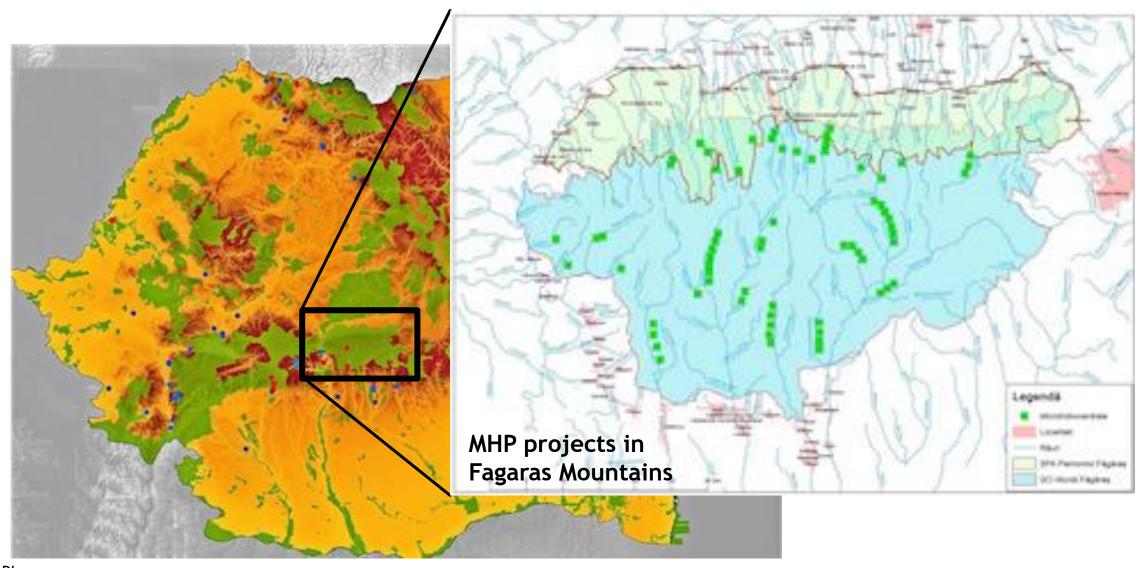
University of Belgrade, Institute for Biological Research "Siniša Stanković" – National Institute of Republic of Serbia;

Societas Europeaea Herpetologica - Conservation Committee

Schwarz, U (leading author) (2019) Hydropower pressure on European rivers: The story in numbers. FLUVIUS, WWF, RiverWatch, EuroNatur, GEOTA, 38p.


Schwarz, U., (2020) Hydropower Projects on Balkan Rivers – 2020 Update. RiverWatch & EuroNatur, Vienna/Radolfzell, 33pp.


Ristić, R., Malušević, I., Polovina, S., Milčanović, V., Radić, B. (2018). Small hydropower plants of derivative type: Insignificant energy benefit and immeasurable environmental damage.


Vodoprivreda, 50: 311–317.

Simonović, P., Ristić, R., Milčanović, V., Polovina, S., Malušević, I., Radić, B., Kanjuh, T., Marić, A., Nikolić, V. (2021) Effects of run-of-river hydropower plants on fish communities in montane stream ecosystems in Serbia. River Research and Application, 37: 722-731.

Crnobrnja-Isailović, J., Jovanović, B., Ilić, M., Ćorović, J., Čubrić, T., Stojadinović, D., Ćosić, N. (2021) Small Hydropower Plants' Proliferation Would Negatively Affect Local Herpetofauna. A Mini-Review. Frontiers in Ecology and Evolution, 9: Article 610325.

Bocutiu & Plesa 10.29302/Pangeea 17.10

Map of micro-hydropower projects in Romania (overlapping on protected areas)

Ristić et al. (2018):

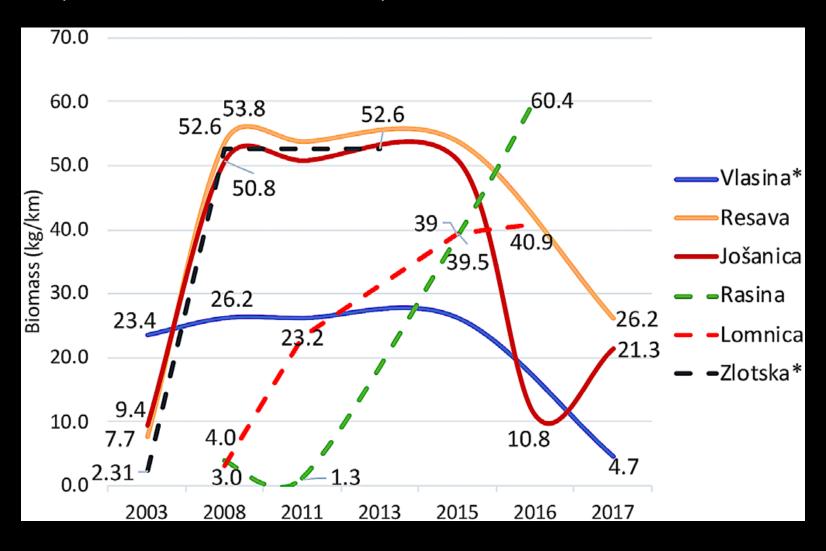
"During low water periods, due to lack of surveillance, ROR SHPP owners direct almost all water to diversion pipelines to produce more energy and achieve higher profits, causing complete destruction of streambed communities for several kilometers."

"In addition to water pollution, extracting water for crop irrigation, mining, timber utilization, deforestation and erosion, and introduction of nonnative strains, RRHPs are the latest impact on native brown trout (Salmo trutta)...

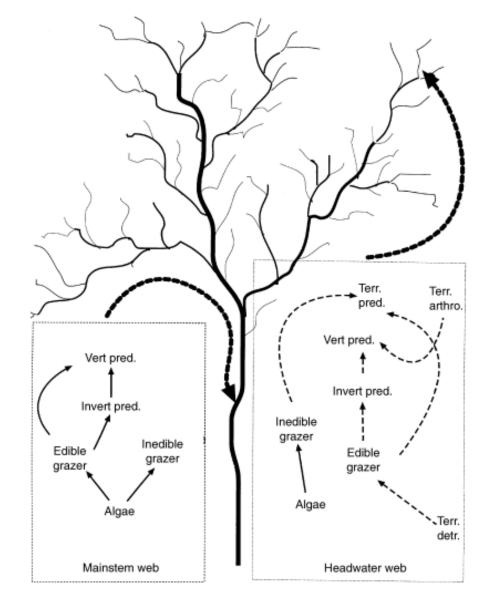
Installing of ROR SHPP in Serbia started in 2015. ROR SHPP were constructed exclusively in steep-sloped montane streams that host fish communities including brown trout.

Downstream of the water intake structures, diversion pipelines 1–3 km, sometimes up to 5 km in length, were installed, often in the mere streambed, to transport water to turbine buildings, from where water returns to the watercourse."

"Construction required heavy machinery, affecting remarkably the streambed and riparian area, and most likely the organisms of both aquatic and adjacent terrestrial ecosystems. That changed the stream sections along the derivation pipes to uniform runs that resemble the shallow (up to 50 cm deep) channels, without any diversity of natural montane stream habitats (e.g., pools, riffles, glides, and cascades) featuring the sections upstream of the ROR SHPP dams."



"Having in mind that environmental requirements, especially the habitat preferences of various species



common in montane streams' fish communities are diverse, this change likely affects them."

"Relative biomass of brown trout (*, populations important for conservation) in streams with (solid line) and without (dashed line) ROR SHPP in Serbia since 2003 (the construction of ROR SHPP started in 2015)."

"Run-Of-River" SHPP (ROR SHPP) with 0.1-10 MW of installed power, redirect water from small mountainous rivers into several-kilometer-long tubes, disrupting complex dynamics of local aquatic food webs and their interactions with neighbor terrestrial food webs. It certainly affects local aquatic communities, but it is often neglected that two highly threatened vertebrate groups amphibians and reptiles which live in and around these wetlands, could be affected as well.

Complexity of aquatic food webs. From: Power and Dietrich (2002)

Amphibians of temperate climate region have a biphasic life history (aquatic and terrestrial environment) and they require freshwater for reproduction

Amphibian larval stages are characterized by complex spatialtemporal feeding dynamics

The impact of reduced water availability is particularly important in areas that are already under hydrological stress

According to the literature data, approximately 30% of amphibian species in the hilly/mountain area of Balkan Peninsula & Romania also use small rivers and streams as breeding and nursery habitats

(Arnold and Ovenden, 2002; Crnobrnja-Isailović, 2020).

List of amphibian species inhabiting hilly/mountain areas of the Balkan Peninsula & Romania. IUCN -International Union for Conservation of Nature; LC – Least Concern; VU – Vulnerable; EN – Endangered; NA – Not Assessed. Red colored are species known for inhabiting lotic or lentic & lotic aquatic ecosystems.

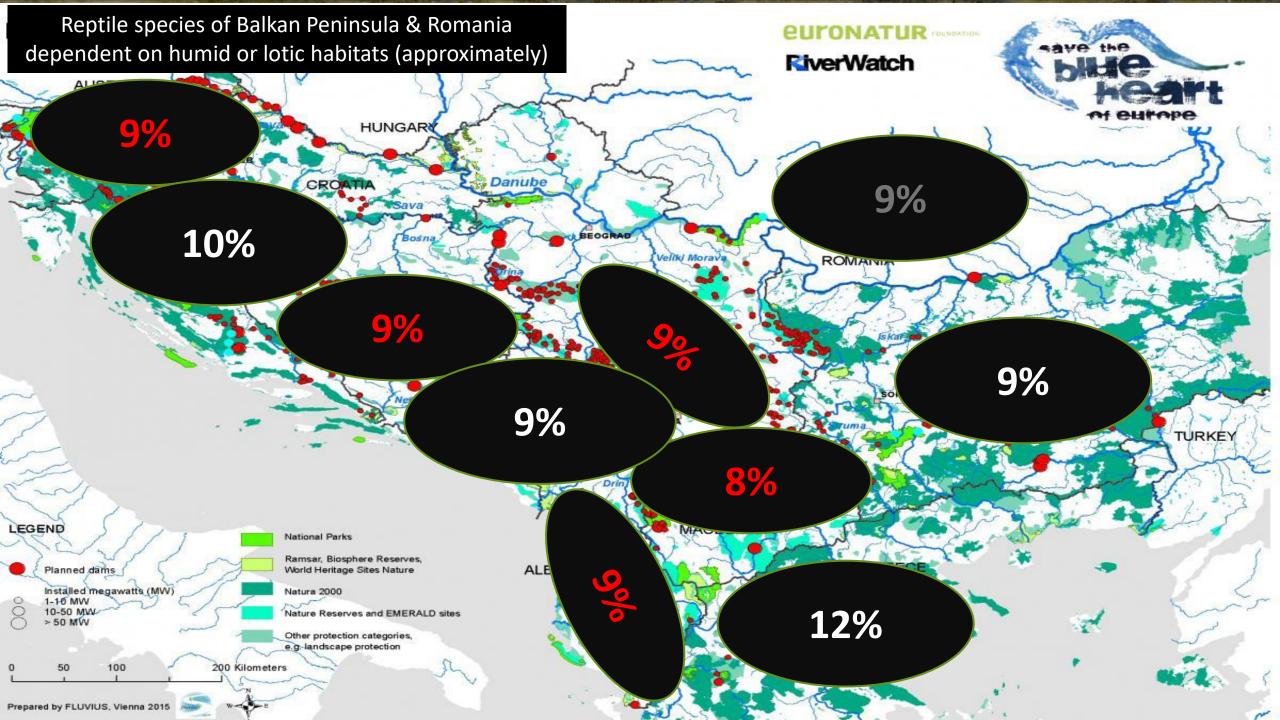
	Genus	Species	Common name	IUCN Global Red List status/Natura 2000 species	Recorded in lentic habitats	Recorded in lotic habitats
1	Proteus	anguinus	Olm	VU/+	Subterranean	Subterranean
2	Ichthyosaura	alpestris	Alpine newt	LC/-	Y	Υ
3	Lyciasalamandra	helverseni	The Karpathos Lycian salamander	VU/+	N	N
4	Lyciasalamandra	luschani	Lycian salamander	EN/+	N	N
5	Lissotriton	vulgaris	Smooth newt	LC/-	Υ	N
6	Lissotriton	montandoni	Montandon's newt	LC/+	Υ	N
7	Salamandra	atra	Alpine salamander	LC/+	N	N
8	Salamandra	salamandra	Fire salamander	LC/+	Y	Υ
9	Triturus	carnifex	Italian crested newt	LC/+	Υ	N
10	Triturus	cristatus	Northern crested newt	LC/+	Y	Υ
11	Triturus	ivanbureschi	Buresch's crested newt	NA/+	Υ	N
12	Triturus	macedonicus	Macedonian crested newt	NA/+	Υ	N
13	Bombina	variegata	Fire-bellied toad	LC/+	Y	Υ
14	Bufo	bufo	Common toad	LC/-	Y	Υ
15	Bufotes	variabilis	Variable green toad	NA/+	Υ	N
16	Bufotes	viridis	Green toad	LC/+	Υ	N
17	Hyla	arborea	Common tree frog	LC/+	Υ	N
18	Hyla	orientalis	Oriental tree frog	NA/+	Υ	N
19	Phelophylax	bedriagae	Levant water frog	LC/+	Υ	N
20	Phelophylax	cerigensis	Carpathos frog	EN/+	Υ	N
21	Phelophylax	cretensis	Cretan frog	EN/+	Υ	N
22	Phelophylax	epeiroticus	Epirus water frog	VU/+	Υ	N
23	Phelophylax	kl.esculentus	Edible frog	LC/+	Υ	N
24	Phelophylax	kurtmuelleri	Balkan water frog	LC/+	Υ	N
25	Phelophylax	shqipericus	Albanian water frog	EN/+	Υ	N
26	Phelophylax	ridibundus	Marsh frog	LC/+	Υ	N
27	Rana	dalmatina	Agile frog	LC/+	Y	Y
28	Rana	graeca	Greek stream frog	LC/+	N	Υ
29	Rana	latastei	Italian agile frog	VU/+	Y	Y
30	Rana	temporaria	European common frog	LC/+	Y	Υ

Species list made following: Adrović (2015), Cogălniceanu and Rozylowicz (2015), Crnobrnja-Isailović and Paunović (2015), Crnobrnja-Isailović et al. (2018), Ćirović (2015), Haxhiu (2015), Jovanović and Jelić (2015), Sotiropoulos and Lymberakis (2015), Stanković et al. (2015), Sterijovski (2015), Tzankov and Popgeorgiev (2015). Information on use of lentic or/and lotic habitats followed Arnold and Ovenden (2002) and Crnobrnja-Isailović (2020).

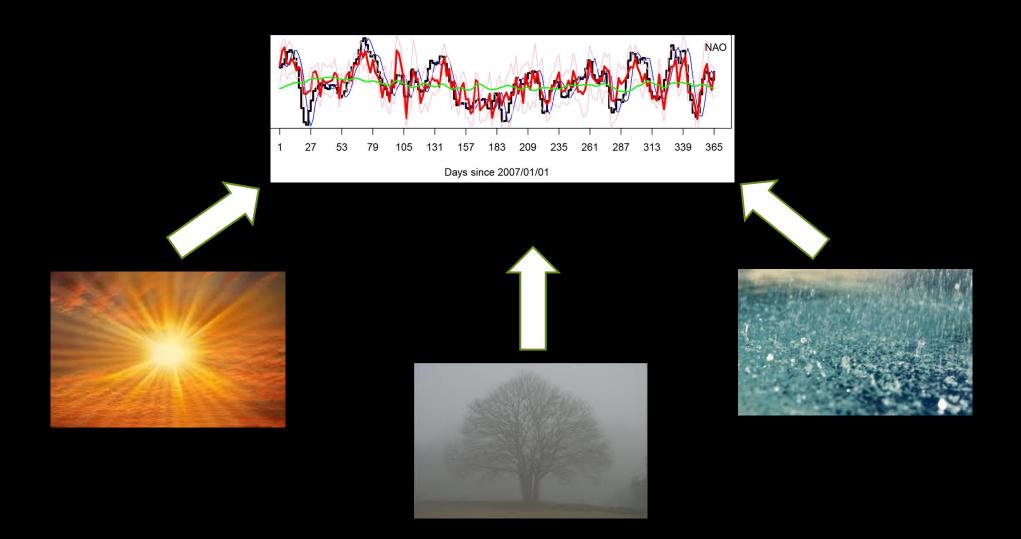
Reptiles often are indirect and direct consumers of species that are a part of the freshwater ecosystems

Humidity apparently influences different aspects of reptile biology and ecology such as reproductive output, population growth and survival

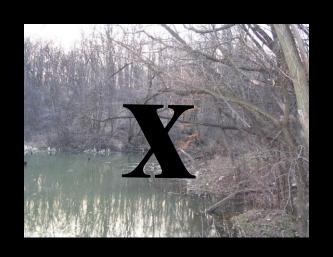
Decline in reptile species' richness in SE Europe in the future is expected if precipitation decrease and the air temperature significantly increase


Additionally, 12.5% of the European reptiles strictly need humid habitats in the hilly/mountainous areas of Balkan Peninsula & Romania (Arnold and Ovenden, 2002; Speybroeck et al., 2016).

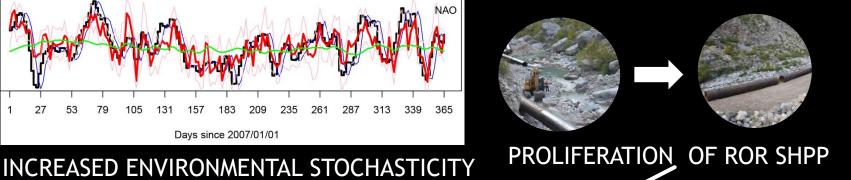
List of reptile species dependent on humid hilly/mountain areas of Balkan Peninsula & Romania. IUCN -International Union for Conservation of Nature; LC – Least Concern; VU – Vulnerable; EN – Endangered; NA – Not Assessed.

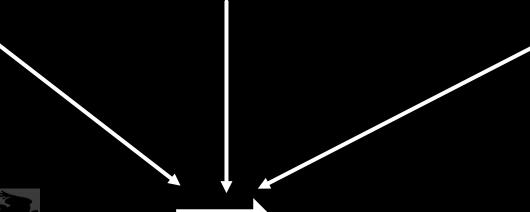

	Genus	Species	Common name	IUCN Global Red List status/Natura 2000 species	Need humid habitats	Inhabit lotic habitats
I	Anguis	fragilis	Slow worm	LC/-	Y	N
II	Algyroides	moreoticus	Greek Algyroides	NT/+	Y	N
Ш	Darevskia	praticola	Meadow lizard	NT/+	Υ	N
IV	Dinarolacerta	mosorensis	Mosor rock lizard	VU/+	Y	N
V	Hellenolacerta	graeca	Greek rock lizard	NT/+	Y	N
VI	Iberolacerta	horvathi	Horvath's rock lizard	NT/+	Y	N
VII	Zootoca	vivipara	Viviparous lizard	LC/-	Y	N
VIII	Elaphe	quatuorlineata	Four-lined snake	NT/+	Y	N
IX	Natrix	natrix	Grass snake	LC/-	N	Y
X	Natrix	tessellata	Dice snake	LC/+	N	Y
ΧI	Vipera	berus	Adder	LC/-	Y	N

Species list made following Arnold and Ovenden (2002) and Speybroeck et al. (2016)



Additional issue is the ongoing climate change and expected natural drying up of a number of amphibian reproductive centers in the region,


as well as aridization of some humid terrestrial habitats suitable for certain reptile species


SUPPOSED CUMULATIVE NEGATIVE EFFECT OF CLIMATIC AND ANTHROPOGENIC IMPACTS ON AMPHIBIANS AND REPTILES IN HILLY/MOUNTAIN PARTS OF THE REGION

Days since 2007/01/01

LOSS OF SMALL WATER BODIES

In conclusion,

our statement is that further proliferation of ROR SHPP all over the Balkan Peninsula & Romania would negatively impact local biodiversity, among the others ichthyofauna and herpetofauna, particularly those species which are directly or indirectly dependent on the lotic ecosystems in the hilly/mountainous areas.

Existing policies and regulations generally appear to underestimate these impacts but scientific interest on issue of non-sustainability of (ROR) SHPP increases.

Almost half of possibly affected amphibian and reptile species are widespread in the region, so proliferation of ROR SHPP would negatively affect many of their local populations, while the amount of electric energy they produce is negligible.

Thank you!