

CERG - European Centre on Geomorphological Hazards GHHD - European Centre "Geodynamical Hazards of High Dams CRSTRA - Centre for Scientific and Technical Research on Arid Regions ECILS - European Centre on Vulnerability of Industrial and lifelines systems ECNTRM - European Center for New Technologies of Risk Management

Project 2020-2021 Results 2020 and objectives 2021

Operational testing and diffusion of innovative and cost-effective monitoring systems for the monitoring and early warning of geohazards affecting watersheds and critical infrastructures

Jean-Philippe Malet (CERG) and Tamaz Chelidze (GHHD)

Rationale:

Setup of **automated monitoring and assessment criteria** for anticipating **geohazards** and maintaining long-term safety of **critical infrastructures** with:

- 1) in-situ/remote sensor data acquisitions systems,
- 2) efficient telemetry systems and databases
- 3) anomaly detection algorithms and decision support systems.

Objective:

2020

Demonstration of in-situ sensors for landslides, floods and engineering projects: Results of operational testing of low-cost sensor systems for the different use cases – Return of experience
Demonstration of remote satellite-based sensors for landslides, floods and engineering projects: Information on satellite technology for monitoring geohazards/engineering projects deformation, and rainfall triggering events dam and surrounding area deformation

2021

- Prototype multi-parametric data analysis systems integrating: Delivery of open source computer programs and algorithms for the analysis of sensor data, and for combining all sources of information to detect deviations from normal <u>behaviour</u>.
- **Dissemination activities:** Manuals describing the use of the technology and organization of an training course *"Low-cost sensors and detection methods for geohazards and infrastructure projects".*

Towards simple and operational guidelines to select the best combination of sensors/instrumentation and processing methods/models for geohazards monitoring and warning

Objective 2020

WP1: Assembling and testing low-cost systems (camera, tils/strain, seismometer) and field installation – Pre-processing of the sensor data.

WP2: Review of existing satellite sensors and processing methods for the analysis of deformation and rainfall properties

WP3: Development of open source computer programs for the analysis of the sensor data, and for the detection of anomalies using machine learning approach – focus on the deformation/rain monitoring data.

WP4: Redaction of the sensor technical documents

Objective 2021

WP5: Final development of the open source multi-sensor analysis programs, release of the user manuals, and of a demonstrator use case (including indicators such as time series and maps).

WP6: Coordination of the redaction of the guidelines (with input of all partners) for the selection of the low-cost sensors and processing methods. Organization of the intensive course *"Low-cost sensors and detection methods for geohazards and infrastructure projects"*

WP1: Assembling and testing low-cost systems (camera, tils/strain, seismometer) and field installation Pre-processing of the sensor data.

Low-cost strain/tiltmeter (ca. 1.2k€)

WP1: Assembling and testing low-cost systems (camera, tils/strain, seismometer) and field installation Pre-processing of the sensor data.

Use cases for operational testing

Cliets rockfall (France)

Enguri Dam (Georgia)

Aiguilles slow landslide (France)

Further testing in 2021 in Algeria (flash flood, CRSTRA) and North Macedonia (landslide, ECILS)

WP2: Review of existing satellite sensors and processing methods for the analysis of deformation and rainfall properties

m/yr

Period: 2016-2020 # of images: 63 (/93 requested) # of pairs: 853 Pair criteria: 500 <deltaT< 1500 days **Copernicus Sentinel-2 satellite image time series**

Slumgullion landslide (2016-2002)

WP2: Review of existing satellite sensors and processing methods for the analysis of deformation and rainfall properties

Drafting of simple guidelines

Usefulness of methods per landslide types

Legend

WP3: Development of open source computer programs for the analysis of the sensor data, and for the detection of anomalies using machine learning approach – focus on the deformation/rain monitoring data.

Analysis softwares

SEISMIC-Learn software: classification of seismic source with AI

TSM software: analysis of deformation/rain observations

WP3: Development of open source computer programs for the analysis of the sensor data, and for the detection of anomalies using machine learning approach – focus on the deformation/rain monitoring data.

Development of webservices

On-line and freely accessible cloud services for satellite data processing

Parameters

analysis_displ_mean: true analysis_displ_vector_coherence: false analysis_persistent_motion: false analysis_vel_mean: true correct_across_track_destriping: true correct_along_track_destriping: true correct_along_track_destriping_value: Mean correct_filter_displ_max: 2 correct filter displacement dir; false correct_keep_corrected_results: true correct_keep_raw_results: false correct_max_deviation: 45 correl_cloud_mask: true

A DECK	S2B_MSIL1C_20200820
T	Date : Aug 20, 2020 Product Type : S2MSI1C Platform : S2B
全国的中国	Relative Orbit : 8

MSIL1C 20200820T103629 N0209 R008 T31UF0 20200820T125618

Cloud cover : 9.8179 Snow cover : -Product Type : S2MSI1C Processing Level : LEVEL1C

S2B_MSIL1C_20200721T103629_N0209_R008_T31UF0_20200721T134235

Date : Jul 21, 2020 Product Type : S2MSI1C Platform : S2B elative Orbit : 8

Cloud cover : 0.0163 Snow cover : -Product Type : S2MSI1C Processing Level : LEVEL1C

WP4: Redaction of the sensor technical documents

Technological criteria			
Criteria	Scale range	Explanation	
Spatial coverage	Point, local (e.g. slope), regional	Typical scales at which the measurements are carried out.	
Information type	1D	One component of the displacement or change along a spatial axis or along the Line-Of-Sight (LOS) of the sensor.	
	2D	2D displacement (mostly horizontal components) at a point or spatially distributed 3D displacement field	
	3D	3D displacement at a point or spatially distributed 3D displacement field.	
	Volume	Volumes and volume changes of the moving mass.	
	Surface features	Time and space evolution of surface features.	
Spatial resolution	mm to hm	Typical spacing of individual measurements	
Temporal resolution	seconds to months	Typical time lag between individual measurements.	
Distance to target	m to km	Distances to target at which the measurement device can be employed. This category is not	

Criteria to select

Objective 2021

WP5: Final development of the open source multi-sensor analysis programs, release of the user manuals, and of a demonstrator use case (including indicators such as time series and maps).

WP6: Coordination of the redaction of the guidelines (with input of all partners) for the selection of the low-cost sensors and processing methods. Organization of the intensive course *"Low-cost sensors and detection methods for geohazards and infrastructure projects"*

In practice:

- Install the low-cost sensors built in 2020 by the partners in their countries (ECILS, CRSTRA)
- Transfer the processing methods/softwares to the partners for operational testing
- Write the final version of the technological notices / guidelines (in several languages)
- Organize the Intensive Course -> Scheduled date October 2021 (Nice, France)