

Strasbourg, 31 July 2025

T-PVS/Files(2025)2022-2_compl

CONVENTION ON THE CONSERVATION OF EUROPEAN WILDLIFE AND NATURAL HABITATS

Standing Committee

45th meeting

Strasbourg, 8-12 December 2025

Bureau of the Standing Committee

16-18 September 2025 Strasbourg

Complaint on Stand-by: 2022/02

Alleged violation of the Convention in relation to deliberate killing of *lutra lutra*

(Austria)

- COMPLAINANT REPORT -

Document prepared by Wiener Tierschutzverein (Tierschutz Austria)

Update Report dated July 2025

Bern Convention / Convention de Berne

Avenue de l'Europe

F-67075 Strasbourg Cedex, France

Per E-mail: bern.convention@coe.int

Vösendorf, am 31.07.2025

<u>Subject: Complaint No. 2022/02: Violation of the Convention in relation to deliberate killing of Lutra</u> lutra

Dear ladies and gentlemen,

Dear Mr. Poutiers.

the Wiener Tierschutzverein (brand name Tierschutz Austria) issues the <u>following statement in due</u> <u>time:</u>

I) Abstract

We take this opportunity to address the first three questions posed by the Bureau in its letter dated May 16, 2025, as they are highly relevant to explaining the problem. We will leave the last question to the state authorities, as we have already expressed our views on this issue in previous statements.

We provide sufficient evidence that it is not necessary to protect fauna from otters. The argument that the fauna must be protected is merely a pretext to justify an exception to strict protection and to influence public opinion.

We provide numerous convincing pieces of evidence for reasons other than otters for the decline in fish stocks. Other satisfactory solutions would involve openly admitting that this is merely a question of competition, which can only be altered by modifying fisheries management and adjusting the expectations of anglers.

We demonstrate that the killing of 232 otters since 2018 has not yielded the expected success but instead has led to a steady increase in the quota. Furthermore, we present evidence that the quota cannot be controlled if otters are shot instead of being caught alive, which is likely to lead to the quota being exceeded.

With the fourth regulation on the killing of otters in Carinthia coming into force in December 2024, it is clear that this is not a temporary exception, but a permanent solution that will be extended again.

II) Need to protect fauna?

The Bureau questions whether the killing of otters is needed to protect fauna. In our opinion, this is a perfect point. From an ecological perspective, the availability of fish regulates the otter population. As mammals, otters must catch their prey very quickly in cold water; otherwise, their energy balance is negative, and they die. Migration is not an option because there are no otter-free streams in the surrounding area. If, as claimed by the fishing lobby, fish stocks are indeed declining dramatically, then otter populations would have to fall in advance.

As the Bureau recognises, the only fish species of concern here is the Danube salmon. However, the vast majority of its habitat¹ in Carinthia is excluded from the killing of otters. If fishermen or the government identified a need to protect this fish species from otter predation, they would target otter populations where the Danube salmon is living, rather than leaving most of its habitat unaddressed. In contrast, it is easy to recognise that the area where otters can be killed perfectly aligns with the prime habitats of brown trout, rainbow trout, and grayling stocked and managed in the interest of anglers. The area where otters are killed, therefore, perfectly coincides with the interests of anglers. There, otters are seen as competitors and must thus be reduced in number.

The idea and assumption that otters must be culled to protect noble crayfish (*Astacus astacus*) is even more questionable. This crayfish is threatened by crayfish plague and has therefore already disappeared from almost all waters in Carinthia. However, crayfish plague is spread by anglers who release American crayfish (*Pacifastacus leniusculus*). Otters and crayfish have a long shared evolutionary history, and there is not a single indication, let alone proof, that otters are responsible for declining crayfish populations.

Brown trout is of great interest to anglers, and competition from otters is particularly fierce. Brown trout prefer to live in the upper reaches of rivers, where they are more readily available to otters than in large rivers. In Carinthia, there are very few waters where the original, genetically unadulterated variant of this fish species still exists. In 2016, the Carinthian provincial government expressed interest in investigating whether otters have a negative impact on these trout. This question was clarified in a three-year otter removal experiment in the upper catchment of the River Görtschitz. It was found that otters harm fishing by eating large trout, which are the primary target of anglers. As a result, fishing rights holders are unable to lease out the waters and suffer economic losses.

Otters can therefore cause economic damage, but this is by no means inevitable, as explained below. The study conducted by the province of Carinthia has also proven beyond doubt that otters do not pose a threat to brown trout populations². On the contrary, the predation of particularly large trout has significantly reduced cannibalism among trout. Since otters have repopulated this section of the watercourse, there are now many more young fish, which aligns with the natural population structure in small streams. The otter has therefore helped restore the fish population and the entire stream ecosystem to a more natural state through its presence.

The argument that the fauna must be protected from otter predation is, therefore, merely a pretext to argue for an exception to strict protection and to influence public perception. Evidence shows that the issue is solely about competition between anglers and otters.

III) Other reasons for fish decline

¹ Schmutz, S. *et al.* 2023. Der Huchen stirbt aus – was tun? Österreichs Fischerei 76, Sonderausgabe. ² Kranz, A., Poledník, L. & Mateos-González, F. 2019: On the influence of otters on brown trout in trout regions: Case study Görtschitz in Carinthia. Final report commissioned by Department 10 – Agriculture and Forestry, Agricultural Law Division of the Carinthian Provincial Government, 98 pages.

Furthermore, the Bureau raises the legitimate question of whether there could be other factors besides otters and requested further information. From the plaintiff's point of view, the following can be stated in this regard:

Drastic declines in fish species of interest to anglers, such as brown trout, have also been observed in areas where otters are not yet present, notably in large parts of Switzerland³. In 2004, the Swiss "Fischnetz-project" cited the following leading causes for the decline in trout:

a) Infectious disease PKD (proliferative kidney disease); b) Poor condition of habitats; c) Chemical pollution; d) Increased water temperature.

Fish stocks in Switzerland continued to decline after 2004, even in the absence of otters, as demonstrated by the decline in catch figures of over 50% between 2016 and 2023.

In Carinthia, in addition to the alleged influence of otters, the following factors are responsible for the decline in fish stocks here:

- Small **hydropower plants**: There has been a significant increase in the construction of new plants over the past 20 years. As a rule, water is taken from the stream and piped to the turbine located further downstream. Otters can hunt particularly efficiently in the remaining stretch of water due to the reduced water volume.
- **Climate change** causes prolonged periods of weather with little to no precipitation, followed by short-term floods, which can mask the problem of low water levels in the overall annual balance. Especially in small streams, the lack of water deprives fish of their habitat.

The remaining water is too warm in summer for fish species such as trout and grayling. On the one hand, increased summer water temperatures over a certain number of days promote fish diseases such as Proliferative Kidney Disease (PKD). On the other hand, the fish cannot migrate further upstream to cooler sections of the river because there is no water there.

- Environmental toxins: Hexachlorobenzene (HCB) is a severe toxin that breaks down very slowly in nature and is also spread through the air. This substance has therefore also been detected in very remote alpine lakes, and even in low concentrations, it causes significant problems for fish reproduction⁴. Carinthia was not only affected by such insidious pollution. The Federal Environment Agency had already assessed the pollutant potential of the lower Görtschitz valley in Carinthia as extremely high in 2003. It classified the remediation of this contaminated site as a matter of utmost urgency⁵. However, environmental pollution with HCB originating in the Görtschitz Valley, which had escalated by burning further harmful substances, became public as late as 2014⁶. The contamination was so severe that cattle had to be slaughtered, and milk had to be withdrawn from circulation. Beyond the Görtschitz Valley, large parts of the province were heavily contaminated with HCB. HCB has the following toxic effects on trout:
 - o Liver and organ damage (liver enlargement, functional disorders).
 - o Reproduction (HCB impairs reproduction, for example, through reduced egg numbers, decreased spawning ability, or malformations in offspring).

³ Abschluss Projekt Fischnetz: Dem Fischrückgang auf der Spur 2004 https://www.news.admin.ch/de/nsb?id=1130

⁴ Jarque et al. 2015: Background fish feminisation effects in European remote sites https://www.nature.com/articles/srep11292.pdf

⁵ <u>Contaminated site K 20 lime deposit I/II.</u> In: <u>Federal Environment Agency</u> – Contaminated Sites Atlas C.

⁶ https://de.wikipedia.org/wiki/HCB-Skandal_im_G%C3%B6rtschitztal

- o Immune suppression: making them more susceptible to disease.
- o Behavioural changes: e.g. regarding escape and feeding behaviour.
- In the absence of specific studies, it is not possible to assess whether and to what extent PKD (proliferative kidney disease) is widespread in Carinthia. In any case, the disease is spread through fish stocking, a standard practice in fisheries management in Carinthia. Studies from Upper and Lower Austria, Tyrol and Burgenland⁷ show that PKD is also spreading rapidly in Austria. Hydrobiologists predict that brown trout will soon become extinct in the Wulka River in Burgenland in 2021 due to this disease⁸.
- There is one more aspect to be mentioned in the context of a decline of big fish, since it is just the decline of large-sized fish which is a problem for anglers. The anglers' interest in fish always rises with the size of the fish they catch. It is their trophy; even if they catch and release it afterwards, many of these fish are wounded and may die, or they may become exhausted and become easy prey for predators such as otters and herons. However, as shown in a high-profile scientific article⁹, there is genetic evidence that the selection for large specimens causes a marked decline in size in the case of the well-documented and overexploited Eastern Baltic cod (*Gadus morhua*). They showed a 48% decrease in size within 25 years, attributed to selective fishing. If this is just partly true for game fish in Carinthia, there would be little surprise that trophy fish get scarce, and that would not be associated with otter predation at all; it would be just the effect of selective angling for large individuals.

Summarising, there are many reasons why fish populations, foremost brown trout populations, declined in Carinthia. It cannot be ruled out that, in certain specific environmental circumstances, typically caused by human activities such as hydroelectric power plants, fish stocking that provokes predation on non-adapted fish, the spread of fish diseases, and climate change, otters can cause economic damage. However, this has not yet been proven in a single case study. In this respect, intervention in the otter population on the grounds of economic damage appears to be more than excessive.

In the context of discussing possible reasons for the decline in fish populations in Carinthia, it is also necessary to address the study by Friedl (2021)¹⁰. He is a fisheries expert at the Carinthian Provincial Government. He claimed to have assessed the impact of otters on a brown trout population. He argued that the otter causes significant damage to fisheries and poses a threat to fish stocks. Further on, he concluded from the Görtschitz removal experiment (*Kranz et al.*, 2019) that the removal of otters would be an effective means of stabilising fish stocks in the stream he studied.

From a population ecology perspective, the following should be noted: The author documents a decline in fish stocks since 2014, but, as the author himself admits, otters have been present in the area for some time. Nationwide otter surveys conducted every five years since 2005 have shown that otters were already present in high numbers in Friedl's study area in 2005¹¹; it is no longer possible to determine precisely when otters first colonised the watercourse before 2005. Friedl's argument that

⁷ Lewisch et al 2019. Distribution and prevalence of *T. bryosalmonae* in Austria: A first survey of trout from rivers with a shrinking population. DOI: 10.1111/jfd.12863

⁸ Waldner et al. 2019. A brown trout (*Salmo trutta*) population faces devastating consequences due to proliferative kidney disease and temperature increase: A case study from Austria. https://doi.org/10.1111/eff.12528

⁹ <u>Kwi Young Han</u> et al. 2025: Genomic evidence for fisheries-induced evolution in Eastern Baltic cod. Science Advances 11, 26. DOI: 10.1126/sciadv.adr9889

¹⁰ Friedl T. 2021: Langzeitstudie zum Einfluss des Fischotters (Lutra lutra) auf den Fischbestand eines Forellenbaches im Klagenfurter Becken. Österreichs Fischerei, 74, pp. 171–191.

¹¹ Kranz, A. Poledník L & Toman A 2005. Current distribution of the otter (*Lutra lutra*) in East Tyrol and Carinthia. Carinthia II 195/115, 317-344.

fish stocks collapsed more than 10 years after the recolonisation of otters is neither ecologically comprehensible nor plausible. If otters had been responsible for the decline in fish stocks, this should have been noticeable in the 2011 fish stock survey. The author further argues superficially that there are no other events that could explain the decline in brown trout. However, the upper reaches of the Rababach stream are crossed by the A2 motorway, which was opened to traffic in 1999. It is implausible that the extensive construction work involved in building the motorway, the traffic on the highway itself, and the construction of a large shopping centre right next to the Rababach will have any direct impact on the trout populations in the stream. Furthermore, and certainly more seriously, the author makes no mention whatsoever of the HCB pollution caused by a factory in the lower Görtschitz Valley near the Rababach study area as mentioned above already. The author has therefore blamed otters for the decline in fish stocks without providing any evidence to support this claim; there is no temporal coincidence between the presence of otters and the decline in fish stocks. Other reasons, such as long-term pollution of the region by environmental toxins and acute pollution in 2014, were not taken into consideration.

IV) Other satisfactory solutions

The Bureau has further addressed the fact that no other satisfactory solutions were provided. This is not surprising because, at the very root of the conflict, is competition for fish, which is hard to avoid for a predator that depends on fish for its livelihood. Other satisfactory solutions would involve openly admitting this competition, which can only be altered by modifying fisheries management and adjusting the expectations of anglers. In any case, allowing otters to be shot in protected areas along fish ladders demonstrates how EU directives are being flouted in this instance.

V) Target not met despite otter culling

Finally, there is one additional aspect not yet considered by the Bureau but essential to address: the impact of otter culling on the achievement of its alleged objectives, namely the reduction of damage to anglers and fishing right holders, and the protection of other protected species and their habitats.

The Carinthian provincial government's regulation of December 2024 stipulates that up to 55 otters may be killed per year. The location of the cull is left to the discretion of the hunters carrying it out. This means that most otters are not necessarily killed where the damage is supposedly most significant, but where a motivated hunter has his territory. The specific impact of one or more otter killings on the increase in fish stocks as a particular target cannot, therefore, be assessed. This is also because there are no fish stock surveys in the exact area where the otters are killed, as this area is unknown and, as said, left to the discretion of the hunters.

Consequently, it can only be assessed whether the removal of otters throughout Carinthia has had a positive effect on fish stocks in randomly selected control sections. However, as already explained above, there are many reasons for the decline in fish stocks, and otter culling may not have any positive effect on the recovery of fish stocks if these other factors are limiting the fish population.

The fish stock surveys commissioned by the state have not yet shown any recovery in fish stocks, which is not surprising given the multiple negative factors affecting fish stocks. In this context, reference should once again be made to the ongoing decline in fish stocks in Switzerland, where there are practically no otters, except for a few individuals in Graubünden, and the decline in fish stocks cannot be attributed to otters.

As fish stocks in Carinthia are not recovering, the quotas for otters to be killed are being increased from one regulation to the next. The first regulation, implemented in 2018, permitted the killing of up to 43 otters per year. In the second regulation (2020), the quota was increased to 51 animals per year. In the third regulation (2022), it was reduced to 50 animals per year, and in the fourth and final regulation of 2024, it is 55 animals. The quotas varied from year to year but were never fully met (Table 1). It remains unclear why the quotas have been repeatedly increased when the

number of otters allowed to be shot in previous years has not been met, which is more likely to be an indication that there are not as many otters as presumed.

VI) Quota effectively exceeded, and no monitoring of killed otters

Finally, it should be noted that 232 otters have been killed since the regulations came into force in 2018, 53 (23%) of which were shot. Shooting is permitted and usually takes place directly at the water's edge or when the otter is in the water. However, otters that are fatally wounded but escape in the water cannot be found since they leave no blood spoor in the water and are therefore not counted towards the quota of otters killed, which can lead to the quota being exceeded. The regulation also stipulates that otters killed must be presented to the authorities upon request. In all 232 killings to date, the authorities have not made use of this control.

VII) No temporary exception, but a permanent practice

The four consecutive regulations in Carinthia also make it clear that, contrary to the statement in the regulation's text, this is not a temporary exception to the year-round closed season, but rather a long-term or permanent practice.

Table 1: Key figures on the quotas for otters permitted to be shot and the number of otters shot per year since the regulations took effect in Carinthia.

Regulation from	Year of regulation	Quota	Fulfilment	
April 24th 2018	1	43	24	
	2	43	31	
Oktober 6th 2020	1	51	46	
	2	51	50	
Dezember 13th2022	1	50	44	
	2	50	37	
Dezember 10th 2024	1	55		
	2	55		

Wiener Tierschutzverein

Update Report dated January 2025

Unfortunately nothing has changed for the otter in Carinthia. The new Carinthian regulation from December 12, 2024 (in the appendix) allows the use of Conibear traps as before, including in fish ladders in nature reserves. Carinthia is 100% in the Alpine biographical region. In this region the conservation status of the otter is not favorable.

The catch quotas in the Excel table come from a UIG request from the Austrian Nature Conservation Association to the authorities, so they are the official ones (the number of unreported cases is much higher.)

Carinthia has now killed 232 fish otters from 2018 to 2024. 111 female otters and 116 males. The sex of 5 animals was not determined.

The protection of suckling otter mothers is still not being observed. Therefore, many orphaned otter children die; the number of young who died without a mother is missing from the Excel table. The number of unreported cases is high because otter mothers look after their young for more than a year. The otter children learn from their mothers, Without a mother they are lost in the wilderness. If they are still being suckled they starve.

179 otters were painfully killed in the cruel, non-selective Conibear traps. After these traps are also set underwater, many otters slowly suffocate underwater in a prolonged struggle for survival (they try to free themselves from the traps, but in vain).

We refer to the entire contents of our 2024 report. Everything is still up to date. We send you this report again in the appendix.

The text of the new regulation in Carinthia from December 2024 has also not changed compared to the old text. Here again the quoted paragraphs:

§ 3 Areas of intervention and quota

- (1) Otters in all forms of development may only be caught by specially trained hunting protection bodies and specially trained hunters from 1 January to 31 December in the area of fishing waters, with the exception of waters pursuant to para. 3 and non-fenceable pond facilities, using trapping equipment that captures intact (live traps). From March 1 to October 31, only captured males, young otters, non-leading and obviously not pregnant females may be killed. From March 1 to October 31, captured leading and obviously pregnant females may not be killed, but must be released unharmed and immediately at the place of capture.
- (2) From November 1 to the last day of February, otters in all forms of development may be caught or hunted and killed with long guns using permitted trapping methods by specially trained hunting protection bodies and specially trained hunters, but live traps are to be used as a matter of priority."
- (3) The capture and killing of otters in the following waters is not permitted, except in the immediate vicinity of fish ladders: [...] Also not permitted, except in the immediate vicinity of fish ladders, are the capture and killing of otters in European protected areas in which the otter is designated as a protected species, in national parks, biosphere parks and in naturally standing waters.
- (4) The maximum number of otters that may be taken in Carinthia is 50 per year. A maximum of 50 otters may be taken in the first and second year following the entry into force of the Ordinance (§ 9).

§ 4 Trapping

- (1) For trapping from March 1 to October 31, only traps whose functionality, design and size guarantee the integrity of the animals during trapping may be used. Only traps that are used for the capture of other marten-like animal species comparable in size under hunting law may be used. Otter traps for live trapping must be designed in such a way that other game species cannot be caught with them. The live traps must be checked at least twice a day.
- (2) For trapping from November 1 to the last day of February, all permitted trapping means and methods may be used, but live traps should be used as a matter of priority. When using conibear traps, only conibear traps with a side length of 30 cm may be used.

§ 7 Supervision [...]

(2) For the purpose of preserving evidence and monitoring, the killed otters (together with their bodies) must be made available to the provincial government upon request within 48 hours (from notification). The person authorized to hunt has the right to appropriate the captured and killed otters in accordance with § 1a para. 1 of the Carinthian Hunting Act 2000.

§ 8 Monitoring

To ensure that otter populations remain in a favorable conservation status despite temporary shortening of the closed season, the Carinthian provincial government must carry out regular monitoring of the population development and conservation status of the otter.