

Reporting under Resolution No.8 (2012) on the conservation status of species and habitats

Favourable Reference Values: theory, observations, examples

Otars Opermanis

Webinar, 7 May 2025

Presentation plan

- Short theory, but further reading: T-PVS/PA(2024)07
- Experience from previous HD Art. 17 reporting (EU)
- Approaches and examples of FRV setting from Latvia (2019-2024)

Definition

 An important part in Conservation Status assessment for species and habitats

FRP – favourable reference population (species)

FRA – favourable reference area (habitats)

FRR – favourable reference range (species, habitats)

- Values reflect the situation that warrants preservation of species or habitat in a longer time perspective
- In CS assessment, FRVs are used to compare with the current values (CVs) >>>

PART C - ASSESSING CONSERVATION STATUS OF A SPECIES

General evaluation matrix (per biogeographical/marine region within a MS)

Parameter	Conservation Status			
	Favourable ('green')	Unfavourable - Inadequate ('amber')	Unfavourable - Bad ('red')	Unknown (insufficient information to make an assessment)
Range (within the biogeographical region concerned)	Stable (loss and expansion in balance) or increasing AND not smaller than the 'favourable reference range'	Any other combination	Large decline: Equivalent to a loss of more than 1% per year within period specified by MS OR more than 10% below favourable reference range	No or insufficient reliable information available
Population	Population(s) not lower than 'favourable reference population' AND reproduction, mortality and age structure not deviating from normal (if data available)	Any other combination	Large decline: Equivalent to a loss of more than 1% per year (indicative value MS may deviate from if duly justified) within period specified by MS AND below 'favourable reference population' OR More than 25%	No or insufficient reliable information available

General principles

- Should be set using the ecological considerations and best available knowledge and scientific expertise;
- Should not, in principle, be lower than the values when a country has joined Bern Convention;
- For population is always bigger than the minimum viable population for demographic and genetic viability;
- Be realistic but not automatically accepted as current values;
- FRVs are long-term targets and can be linked to other level (site and biogeographical) targets (e.g. FRV=∑SSCOs +resource outside the network);
- FRVs should be set taking into account the **precautionary principle** (margin for uncertainty, better some FRV than none).

Appearance

Main methods

- Model-based approach [=modelling future developments using current status and available information]
- Reference-based approach [=judging about safe population levels from past experience]
- Other miscellaneous methods adapted to certain species groups

Key method choice factor is data availability!

Observed difficulties

- **Not-reporting FRVs.** There are four parameters for Conservation Status assessment: (1) "range", (2) "population" (species) or "area" (habitat), (3) "habitat" (species), "structure and functions" (habitat), (4) "future prospects". Assessment rules are that the if population or habitat area assessments are unknown, the overall assessment can be still Favourable, if the other 3 parameters are concluded Favourable.
- Operators and similar are not very helpful either to assess precise distance to target nor have a reference to other level targets
- FRVs too **often automatically accepted as current values**. Good to remember that the FRVs sould be achieved not only by preserving existing status, but also restoring or improving it!
- Good FRV also needs a good CV to be used for comparison!
 - Same population units needed for FRVs and CVs!
 - For populations, there are 6 CV values possible in SDF (min, max, best, alt) while only one FRV. Sometimes causes problems.
 - The difference between min and max, if used, cause problems in interpretation. E.g. if CV minimum-maximum is 4300-43000i, and FRV is 43000i, what can we conclude?

FRV quality during the last two Article 17 reporting rounds

Relationship between FRVs and CVs: species

Examples from Latvia

- Developed for 2019-2024 Article 17 reporting round
- Methodology 2018-2019, implementation: LIFE-IP project (2021-2024)
- FRVs are seen in the same system as site-level conservation objectives
 - Model-based approach: <5%
 - Reference-based approach: ca 70%
 - Other approach: ca 25%

Model-based approach: wolf

- Population Viability Analysis (Vortex)
- Most scientific
- Very data hungry: needs data eg for dispersal, reproductive system, reproductive rate, mortality rate, initial population size, harvest, etc.,
- Answers if population will get extinct in 100 years given the selected population size (FRP) as a departure point
- Program models various possibilities in iterations (1000) taking different input values within confidence limits
- Wolf: FRP = 600 individuals before hunting season
- HDV was 300-400 individuals
- Range: whole country

Reference-based approach: most species

- Based on values in and changes between 3 milestones (REF, HDV, CV)
- Possible 9 scenarios
- One value in 4 scenarios (1., 3., 7., 9.)
- Interval in 5 scenarios (2., 4., 5., 6., 7.)
- If interval additional 5 questions to identify final value with interval (one question =+20% of the interval)
 - Climate change
 - Importance of LV population
 - Population isolation
 - Presence of negative factors
 - Negative trends

Reference-based approach: examples

Other approach: river lamprey

- Focusing on present situation
- Based on habitat suitability analysis (conditional modelling)
- Data from: (1) country-wide database of 1 km long river segments that include various environmental and anthropogenic factors and (2) long-term fish monitoring from sample plots
- FRP corresponds to situation when adverse anthropogenic effects (eg migration obstacles, pollution sources etc.) on lamprey habitat are removed
- Population unit: number of larvae in August-September calculated from densities

CV: **132 993 404** individuals

FRP: **205 167 076** individuals

Final remarks / suggestions

- Report preparation is only a closing stage of the process: the importance of data collection – not to forget!
- Use all best possible data and mobilise scientific community
- Do not hesitate to be creative and develop new methods that best suite your country and possibilities
- Be transparent record your steps and data assumptions (so that study can be repeated)
- Foresee a review process for FRVs, especially if data situation is poor
- Better some FRVs (and then review if better data arrive) than none

Thank You for attention:

