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Item Response Theory

N.D. Verhelst
National Institutefor Educational Measurement (Cito)
Arnhem, The Netherlands

This section consists of four non-technical sections (containing no formulae) where basic notions of
IRT are explained and discussed. Following these, a number of notions and techniques are discussed
in a more formal and technical style (sections G5 through G.7). To avoid the use of formulae as much
as possible, we have made extensive use of graphical displays. It is possibleto learn a lot from
graphical displays used as examples in a textbook, but one learns a lot more by producing the graphs
oneself and using one's own material. To help the reader in constructing graphs using modern
computer technology, a special section (G.8) has been added whereit is explained, step by step, how
most of the graphs in the preceding sections are produced.

G.1 General characterization

The basic notion in Classical Test Theory isthe true score (on a particular test). In Item Response
Theory (IRT) the concept to be measured is central in the approach. Basically, this concept is
considered as an unobservable or latent variable, which can be of a qualitative or a quantitative nature.
If it is qualitative, persons belong to unobserved classes or types; if it is quantitative, persons can be
represented by numbers or points on thereal line, much like in factor analysis.

Approaches where the latent variable is qualitative are primarily used in sociology. The technique to
do analyses of thiskind is called latent class analysis. It will not be discussed further in this appendix.

In psychology and educational measurement the approach with quantitative latent variablesis more
widespread, and it will be the focus of the present section. We will start with a quite old approach by
Louis Guttman. It contains a number of very attractive features and makes it possible to understand
clearly the approach and theoretical status of IRT.

The concept to be measured (an ability, a proficiency, or an attitude) is represented by the real line,
and aperson is represented by a point on that line, or what amounts to the same, by areal number. The
lineisdirected: if the point (of person) B islocated to the right of the point (of person) A, we agreeto
say that B is more able, proficient, or has a more positive attitude than A. The basic purpose of
measurement isto find as precisely as possible the location of A and B (and of everyone one might
wish to measure) on that real line. To do this, one must collect information on these persons, and this
is done by administering items to them. In this sense, an item response is considered as an indicator of
the latent underlying variable. In the theory of Guttman, an itemis also represented by a point on the
latent continuum, where it has the status of athreshold: if the person’s point islocated to the left of
the item point, then the item is (always) answered incorrectly; if the person's point is located to the
right of theitem, itis (always) answered correctly. So far the theory is somewhat trivial, but it does not
remain so if we consider the responses to more than one item.

Consider the case of athreeitem test, with itemsi, j and k, and suppose the location of these items on
the latent continuum isin this order: item i takes the leftmost position and item k the rightmost one.
We can concelve of these three items as cut points of the real line (they cut the real lineinto four
pieces). All persons having their representations to the left of threshold i give three incorrect answers,
between i and j, only itemi is answered correctly; between j and k, itemsi and j are correct, and to the
right of k, all three responses are correct. In Table G.1 the four response patterns are displayed. Seen
asawhole, the‘1’ scoresform atriangular pattern, indicated by the shading. If the theory is adequate,
then we can find an ordering of the items (in the present case the ordering of i, j, k) and an ordering of
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the different response patterns such that thistriangular shape arises. This solution iscaled a
scalogram.

Table G.1. A scalogram
itemi itemj itemk
0 0 0

1 0 0
1 1 0
1 1 1

Isthisatheory? Yes, itisand it isavery strong one. A theory is a coherent narrative about reality,
which imposes certain constraints on possible phenomena. Guttman'’s theory (in the present example)
says that aresponse pattern like (1,0,1), although possible, will not and may not occur. In general,
Guttman’ s theory says that with p items, only p+1 response patterns can occur (which, moreover, have
to fit in ascalogram) while the number of possible response patternsis 2°. (If p = 10, 11 different
response patterns may occur, while 1024 different patterns are possible). Thisis avery strong
prediction, and the theory can be falsified by a single occurrence of a single not-allowed pattern. The
theory is so strong that it has to be rejected amost always in practice. Even one simple mistake in the
recording of the item answers may suffice to reject the theory, and thisis the weak point of Guttman’s
theory: it isdeterministic, i.e., it claims that the response is predictable without error from the relative
position of person and item on the latent continuum. The left hand panel of Figure G.1 showsthisina
graphica way: to the left of the item point, the probability of acorrect response is zero, to theright it
isone (and at the point itself, it isleft unspecified: the vertical dashed lineis only added as visual
support).

05 05 1

probability of a correct response
probability of a correct response

0 0
latent continuum -2 -1 0 . 1 2
latent continuum

Figure G.1. A deterministic and a probabilistic model

An elegant way of getting rid of this deterministic character of the theory isto avoid this sudden jump
from zero to one, and let the probability of acorrect answer increase smoothly as the latent variable
shiftsfrom low to high values. Thisis shown in theright hand panel of Figure G.1. But eiminating the
jump also makes the location of the item on the latent continuum unclear. Therefore one needs a
convention, and the convention agreed upon in the literature is to define the location of the curve as
that value of the latent variable that corresponds to a probability of %% to obtain a correct answer. In the
right hand panel of the figure, one can say that the curveislocated at zero.

With the help of this curve, we can list a number of properties which are common to al models which

areused in IRT:

1. Thecurveisincreasing, meaning that the higher the value of the latent variable, the higher the
probability of acorrect response. (There are aso models where this monotonicity is explicitly
avoided, but these models seldom find useful application in educational testing.)

2. The probability of acorrect answer isaways greater than zero and always smaller than one. This
means that there is always a positive probability of getting the answer right even for very low
values of the latent variable, and always a positive probability of an error, even for very high
values.

3. The curve describing the probability is continuous, i.e., it has no jumps like in the Guttman case.
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4. Thecurveis‘smooth’. For the discussion in this section, this is not important; for the mathematics
to bedonein IRT, itis.

In Figure G.2 two sSituations are displayed with two items. In the |eft-hand panel the two curves have
exactly the same form, oneisjust a horizontal shifting of the other. In the right-hand panel, the
rightmost curve has another location (see the dashed lines), but is also much steeper than the other.

0.5 0.5 1

T T T T 1 0 T T t t T 1
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Figure G.2. Differencesin difficulty and discrimination

In the left-hand panel one seesthat one curve is located at zero and the other at the value of one. For
the latter one, a higher value of the proficiency is needed to obtain a probability of ¥z than in the
former case, so one can say that the latter item is more difficult. Thisiswhat is generally donein IRT:
the amount of proficiency to obtain aprobability of ¥ for a correct answer is defined as the index of
difficulty of theitem. In the right-hand panel the two items also have difficulty indices of zero and one
respectively, but the more difficult item is also better discriminating than the easy one. This difference
in discrimination is reflected by the differences in stegpness of the two curves; the steeper the curve
the better theitem is discriminating. The two most important characteristics of the items are thus
visually reflected in the figures: difficulty by location and discrimination by steepness. From the right-
hand panel it isalso clear that discrimintation isalocal property of the item: the well discriminating
item discriminates between people having a theta value lower than 1 (al having alow probability of
getting the correct response) and higher than one (having a high probability); it does not discriminate
for example between a theta value of —1 and —2, because at these two |ocations the probability of a
correct response is very near zero (see also Section C).

Now we are ready for some terminology. In principle we can draw acurve like in Figure G.2 for each
itemin atest. These curves are called item response cur ves. The curves are graphs of a mathematical
function which relates the value of the latent variable to the probability of a correct response. These
functions are called item response functions. To be able to do mathematics with these functions,
however, we need to know something more than only the graphs; we need aformula (afunction rule)
which expresses the exact relation between the latent variable and the probability. In such aformula
the latent variable is usually represented by the Greek letter theta (). There are many rules which
result in asigmoid graph like in the figure, and we could in principle choose a different rule for each
item. But in the left-hand panel of Figure G.2, the two curves have the same form, only their location
differs. So it is reasonable (and parsimonious) that their formulae are also very similar, but at the same
time general enough for alowing differencesin location. Thisis done by constructing afunction rule
where the precise value of the location isleft unspecified, and is represented by a symbol. We will use
the symbol [ for this. If zero is substituted for this symbal, the resulting function rule is the rule for

the leftmost curve in the figure; if oneis substituted, we get the rightmost curve. So S isthe symbol

for anumber, and since we leave it unspecified, it iscaled a parameter. So we may think of both
curves as being described by the same rule, but with a different value of the [ -parameter. In general

we will say that the item response function of item 1, has parameter 3, , that of item 2 has parameter

B,, and in general that item i has parameter [ . Since these parameters indicate the degree of

difficulty of theitem they are caled difficulty parameters. One can also say that the general rule
describes afamily of curves, and the rule with a specific value of the difficulty parameter describes a
particular member of this family.
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In the right-hand panel of Figure G.2, the curves differ in two respects. To describe them as members
of the same family, we will need a broader family, where members can differ not only in difficulty but
also in discrimination. Therefore we will need two parameters, a difficulty parameter and a
discrimination parameter. Details are discussed in Section G.5.

For the general function rule, many rules are applicable in principle, but one has become very popular,
because of its mathematical elegance and because of a number of quite mathematical and
philosophical reasons, which will not be discussed here. Its name isthe logistic function. If itisused
to characterize the item response functions, one says that the logistic model isused. Thelogistic
model whereit is assumed that all itemsin the test have the same discrimination (like in the left-hand
panel of Figure G.2) is called the Rasch model (after the Danish mathematician G. Rasch who
invented it). In case different discriminations are allowed as well, the model is called the two-
parameter logistic model (2PLM).

One should clearly redlize that al the above is a narrative (theory) about the world (admittedly a small
piece of the world, but anyway), and that, although it may sound elegant and plausible, it is not
necessarily true. Moreover, its basic entities — theta-values, difficulty parameters, probabilities—are
not directly observable, although we need them in applications. The only observables we have are the
observed answersto the itemsin the calibration sample, or more exactly, a summary of them: atable
filled with ones and zeros. Using this table, we have three tasks that must be carried out:

1. Estimating the item parameters (difficulty parameters and possibly discrimination parameters);

2. Checking the truth (validity) of our narrative;

3. Estimating the theta-value of the persons in the calibration sample, and of future test takers.
These three steps are discussed in turn. Steps one and two are usually carried in asingle run of a
software program. The two stepsjointly are usually designated as calibration.

G.2 Estimation of parameters

The procedures by which parameters are estimated in IRT are generally quite complicated and cannot
be carried out without a computer. There are, however, a number of features of this process which
have direct implications for the practical use of the results. We will discuss them in a number of short

paragraphs.

1. Maximum Likelihood (ML). This expression refersto ageneral procedure to estimate parameters
in probabilistic models. In general it chooses the values of the parametersin such away that the
data we have are aslikely or probable as possible. How thisis done, isahighly technical problem,
but it isimportant to notice that the estimates your colleague obtains with his datawill differ in
general from the estimates you have with your data, even if both of you estimate the same ‘true’
parameters. Therefore, estimates always should be accompanied by a standard error which isa
degree of accuracy of the estimate. The most important way to influence this accuracy isthe
sample size. In Section G.6, the principle of maximum likelihood is discussed in more detail..

2. Joint Maximum Likelihood (JML). Suppose we use the Rasch model with kitemsand N
persons. The unknown quantitiesin this problem are the k difficulty parameters and the N theta
values of the test takers. We can treat these N+k unknown quantities formally as parameters and
estimate them jointly from the data by a maximum likelihood procedure. Thisiswhat was donein
thefirst software that was developed for IRT in the U.S.A. This procedure, however, leadsto
problems: the bigger the sample size, the bigger the problem is, because each new person brings
his’/her own theta value. So, as the sample grows, the number of parameters grows at the same
rate, and standard statistical theory is not valid in such a situation, although it is applied routinely
in software that uses this approach. For example, the standard errors reported are not correct. It is
strongly advised, therefore, not to use software which uses this method.

3. Marginal Maximum Likelihood (MML). Instead of treating the individua theta values of the
personsin the calibration sample as individual unknown parameters, we could aso treat them as a
random sample from a certain population of theta values. For example, we might think that in the
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population the theta values are normally distributed, and that the sample we have is arandom
sample from this population. With this approach the number of parametersis limited: the unknown
parametersin this approach are the item parameters and the two parameters of the normal
distribution (mean and variance), which are estimated jointly by ML. Thisisagood and solid
approach, but one should realize that in doing this, one has complicated the theory: one not only
assumes that the items behave like in Figure G.2, but on top of that we have added the assumption
that thetais normally distributed, and that the sample we have is arandom sample from that
distribution. If the latter assumption is not true, this will affect not only the quality of the estimates
of the mean and the variance, but also of the item parameters. An example will be discussed in
point 5.

Conditional Maximum Likelihood (CML). In this method the parameters are estimated given
that the score of each person is known. The concept is quite hard to explain without technical
details, and only an intuitive approach with two items will be given. In Table G.2 the (fictitious)
frequencies of the four response patterns with two items are given. From the margins of the table it
is seen that item 2 isthe hardest of the two: it has a p-value of 0.33 (100/300), whileitem 1 hasa
p-value of 0.5 (150/300). But we can deduce conclusions on the relative difficulty of the two items
also from the shaded cells. Jointly, these cellsindicate the persons who have one of the two items
correct. There are 110 such persons, and of these 110 (with the same score on the two-item test),
80 had item 1 correct and only 30 have item 2 correct, indicating that item 2 is the most difficult of
thetwo. The CML-method is based on this kind of comparison, but gets difficult when the test
contains more items.

Table G.2. Frequency table for two items

item1
1 0 tota
item 2 1 70 30 100
0 80 120 200

total 150 150 300

The big advantage of this method is that the parameter estimates are not systematically influenced
by the way the calibration sample is composed; it isimmaterial whether the sampleis arandom
sample from the population or not. This feature is sometimes called * sample independence’ .
Theoreticaly it is parsimonious, because it does not require any assumption about the distribution
of thetain the population. The disadvantage, however, isthat it cannot be applied with all IRT
models. It is applicable with the Rasch model, but not with the 2PLM. Thereasonisthat in the
Rasch model the score isjust the number of correct item answers, while the scoreinthe 2PLM isa
weighted sum, the weight being the discrimination parameter of the item. But if we do not know
this weight (and we do not before the estimation), we cannot compute the score, and therefore we
cannot apply CML, which requires that the score is known.

OPLM. In the Rasch model al items have the same discrimination. Thisis avery strict
assumption which is almost never fulfilled in practice. On the other hand, being able to use the
CML-method is agreat advantage, because it frees the test constructor from the burden of
sampling randomly from a population that often is not defined very sharply. The way out of this
problemisto try to find amodel which alows for different discriminations of the items and at the
same time makes estimation by CML possible. Such asituation is created by applying formally
the two-parameter model, but assuming at the same time that the discrimination parameters are
known, i.e., they are no longer an unknown parameter, but just a known constant. Thisleaves only
one parameter per item, although different discriminations are possible. (Hence the acronym
OPLM, which stands for One Parameter Logistic Model.) Of course, this does not solve the whole
problem: we have to know how to choose these constants, and we have to check whether they are
an adequate choice. Thisisdiscussed in Section G.3.

Test design. In some cases the number of itemsis so large that it is unfeasible to administer every
item to every person. So each person in the calibration sample respondsto a subset of the items
following a certain set up or design. Two examples of such an incomplete design are displayed in
Figure G.3.
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...items... ...items...

group 1 | group 1

group 2 | group 2
Figure G.3. Two incomplete designs

The groups refer to groups of persons. The shaded areas represent the items that are administered
to the groups, the blank areas represent items not administered. There is an important difference
between the two designs. In the left-hand panel, some items are administered to both groups. Such
an overlap is not present in the right-hand panel. One says that the left-hand design islinked,
while the right-hand one is not linked. These designs are simple because they involve only two
groups. In Figure G.4 two linked designs with four groups are displayed. In the left-hand design a
number of items are common to al groups. This set of itemsis called an anchor, and sometimes
the design itself isreferred to as an anchor design. The right-hand panel has no anchor, but it is
linked anyway. Groups 1 and 2 can be compared to each other because they have someitemsin
common; the same holds for groups 2 and 3. Groups 1 and 3 have no items in common, but they
can be compared indirectly through group 2. Thisiswhy the design is linked: each pair of groups
can be compared, directly or indirectly by some common items.

...items... ...items...
gr. 1 gr. 1 |
ar. 2 ar. 2 |
ar. 3 ar. 3 |
ar. 4 ar. 4 |

Figure G.4. Two linked incompl ete designs

It isimportant to consider the sampling status of the groups of persons used to administer the
items in an incomplete design. We consider two important cases: either the groups are planned to
be ‘equal’, or they are planned to be ‘unequal’. By ‘equal’ is meant statistically equivalent,
meaning that the group a particular person belongs to is determined at random. Such a situation
arisesif there are too many items to be administered to a single person. In such a case both designs
in Figure G.4 are suitable. But sometimes the groups are intentionally not equivalent. Suppose the
itemsto be calibrated cover a broad range of proficiency, from A2 to C1, say. Then groups can be
chosen in such away that the items are adequate for their average level of proficiency. In the
example of Figure G.4, the groups may be defined in terms of the number of years of instruction;
e.g., group 1 having the fewest years therefore gets the easiest items. In this situation an anchor
design will probably not be adequate, because the anchor must be administered to everybody. The
design in the right-hand panel of Figure G.4 is more suitable.

Here are some rules for the estimation method to be used in different designs:

a CML can be used only with linked designs, be it with statistically equivalent groups or not. It
can even be used in cases where some persons happen to belong to severa groups. This may
occur, for example, in the rightmost design of Figure G.4, if the data are collected at different
time points. If the data for groups 1 and 2 are collected this year and for groups 3 and 4 next
year, it may happen that the same person (with a possibly different theta value) participates
twice. In the estimation procedure such a person is treated as two different persons. One
should be careful, however, in administering twice the same items to the same person, because
in such a case the effects of proficiency and memory are confounded, and if there are strong
memory effects, the estimates of the item parameters will be distorted systematically.

b MML can be used with linked and not-linked designs, but one should be careful, because the
technical feasibility of the estimation procedure does not necessarily guarantee valid results.
We consider a number of cases:

i) If the groups are statigticaly equivalent (they represent the same population), then a
design like in the right-hand panel of Figure G.3 can be used: there are no common items,
but the items in the two subsets are comparabl e because they are administered to
comparable groups.
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i) If in the same design, the groups are not comparable, then it is unrealistic to assume
that both groups come from the same population. In such a case, we could assume that
there are two popul ations where the latent variable is normally distributed (and then we
have to estimate two means and two variances). But in anon-linked design thisis
technically not feasible, and intuitively it should be clear why not: if group 2 obtains a
higher average score on its test than group 1 on acompletely different test, the difference
could be explained by a difference in average proficiency or by a difference in difficulty
of the two tests, and logically there is no way to distinguish between these two sources.

iii) If one uses non-linked designs, oneisforced to apply MML (CML not being feasible)
and to assume that the groups are equivalent. But what if they are not equivalent? Forming
equivalent groups is arisky undertaking, and in principle there exists only one good
method: randomization (e.g., tossing a coin to decide if Johnis going to group 1 or to
group 2). But real randomization can be very impractical. Suppose one wants to
administer alistening test with the stimulus text coming from loudspeakers. In an
incompl ete design with good randomization, this may mean that one haf of a class hasto
listen to different sample texts than the other half, such that simultaneous testing is
practically impossible. But serial testing may not be liked by the school. The practical
solution in such a case — administer the same test to the whole class—will in al likelihood
jeopardize the statistical equivalence of the two test groups (even if they ‘look’
comparable: randomizationis ajob for coins and dice, not for human judgment). If one
proceeds anyway with MML, the estimates of the item parameters will by distorted in a
systematic way: the difficulty of the items administered to the weakest group will be
overestimated, and the difficulty of the other items will be underestimated, implying that
the difference in the average difficulty of the two tests will contain a systematic error
(caled bias). This bias may be considerable. Thereforeit is good practice to use linked
designs as much as possible.

7. Theconcept of information. The discussion about test designs in the preceding paragraph might
lead to overoptimistic ideas (“my design is linked, so hothing can happen to me”). A simple
example will show this. Suppose atest consisting of items at C1 level isadministered to A2
students. We will then probably observe very few correct answers, and the only valid conclusion
we can draw from this observation isthat the test is too difficult for the test takers. It will not be
possible to estimate to an acceptable degree of accuracy the differencesin difficulty between the
items. This means that the answers obtained convey very little information about the items. In
statistical theory the concept of information is defined rigoroudy, and it can be quantified.
Technical details are discussed in Section G.7; here we discuss some features that are relevant for
testing practice:

a

The concept of information is related closely to the standard error of the estimates. The
amount of information equals one divided by the square of the standard error. For example, if
the stzandard error equals 0.4, the amount of information about the item parameter equals
1/0.4° = 6.25.

The amount of information provided by an answer is largest when the probability of a correct
answer is 0.5. If the probability of acorrect answer is near zero or near one, very little
information is collected.

In the Rasch model (when al discrimination parameters are equa to one), the maximum
information coming from a single observation equals 0.25 (see aso Section G.6).
Information is additive. This means that the information provided by the answers of John may
be added to the information provided by the answers of Mary. This holds only if the answers
of John and Mary are independent of each other. (If John copies Mary’ s answers we have no
new information).

Combining a and d above shows that the standard error of the estimates will get smaller the
larger the sample size is, but point b shows that not every person in the sample has an equal
contribution to the total amount of information. Thisisimportant in planning the test design:
to get accurate estimates of the item parameters, the difficulty of the items should correspond
to the proficiency of the test takers. To accomplish this, the test constructor should have a
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priori arather good idea of the difficulty of the items and of the level of the intended
calibration sample.

f. Therdation between amount of information and the standard error of the estimatesis an
important one. If the sample size is doubled, the amount of information will (roughly) be
doubled a so, but the standard error of the estimates will not be halved, i.e. it will no be ¥z of
the original standard error, but only the square root of ¥ (which is 0.7 approximately). To
halve the standard errors, the sample size should be quadrupled. Thisrelation is sometimes
denoted as the square root rule.

g. Theestimation of the difficulty parameter of anitem is not possible if its observed p-valuein
the calibration sample equals zero or one.

8. The concept of calibration. If one buys akilo of meat at the butcher’s, the butcher places the
meat on a balance and the customer can read the weight of the meat from a gauge. If the needle
indicates one kilo, the customer trusts that the meat weighs really one kilo. Thistrust is based on
the knowledge that the balance has been calibrated (in the old days by an inspector of weights
and measures), i.e., it has been verified that the indicated weight corresponds to the real weight.
Theidea of calibrating a set of items has a similar meaning, but things are sometimes less evident
than they seem to be, even at the butcher’s. Two important concepts are discussed: unit and origin
of the scale.

a. Theunit of the scale. In common social talk an utterance like “the weight of the meat |
bought isone” is not acceptable, and will probably be followed by the question “one what?’.
But when one says that the difficulty parameter of an item equals 2, we should ask the same
guestion: “2 what?’, or more generally, what is the unit of measurement? Thisis not an easy
question to answer. In principle the unit is arbitrary, and there is no internationally accepted
standard, like for weights or lengths, and even stronger, there cannot be one, since the theory
is built to measure concepts of different nature. It is a meaningless question to ask whether one
unit in language proficiency is the same as one unit in attitude, just asit is meaningless to ask
if onekilo is more or less than one meter. To interpret the unit of measurement, we need a
comparison on the same scale. A good standard to compare with is the standard deviation of
the underlying trait in the target population. Here is an example: suppose item one has a
difficulty parameter of 1 and item two has a difficulty of 2. Suppose further that the measured
proficiency in the target population has a mean of zero and a standard deviation of 0.8. Then
we can say that the two items lie 1.25 ( = 1/0.8) standard deviations apart, or, equivalently,
that the unit of measurement on the scaleis 1.25 standard deviations of the target distribution.

b. Theorigin of the scale. Weights and lengths are measured on aratio scale, meaning that we
can choose the unit of measurement arbitrarily, but not the origin: it is clear and unambiguous
what we mean by aweight or length of zero, irrespective of the unit we use. But if we say that
the temperature is zero degrees, we will have to add the specification of the scale used,
because zero degrees Fahrenheit is alot colder than zero degrees Celsius. Scales whose origin
(the point or object or item which gets the number zero as its measure) is arbitrary (aswell as
the unit) are called interval scales. The scales that are constructed with IRT are interval scales,
and therefore the origin can be chosen freely. Of course, to have meaningful communication,
we have to fix in some way the origin and tell other people how we did choose the origin. The
specific way in which the origin is chosen is called hormalization (a confusing term, which
has nothing to do with the normal distribution). Common ways to choose the normalization
are: (i) defining the difficulty parameter of a specific item as being zero; (ii) defining the
average difficulty of al theitemsin the test as zero and (iii) defining the mean proficiency of
the target population as zero. Of course, only one of these definitions can be chosen.

G.3 Check your narrative

One of the most attractive advantages of IRT is the possibility to carry out meaningful measurement in
incomplete designs: it is possible to compare test takers with respect to some proficiency even if they
did not all take the same test. The most pronounced case of thisis Computer Adaptive Testing (CAT),
where the items are sel ected during the process of test taking so as to fit optimally with the level of
proficiency as currently estimated during test taking. To apply CAT or some more modest application
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where incomplete designs are used, requires alot of technical know-how. Thisis sometimes packed in
nice looking software, and some users of this software may think that the problem is nothing more
than technical know-how. Thisis however a naive way of thinking: the advantages of IRT are only
availableif the theoretical assumptions on which the theory is built are fulfilled. Thereforeit isthe
responsibility of all users applying IRT to check as accurately as possible these assumptions.

In adeterministic model, a check isrelatively easy. The model predicts exactly what can happen and
what not. Finding a single case that is not predicted by the model is enough to reject it. In probabilistic
theories, by contrast, the checking is more difficult. The models are built in such away that amost
everything is possible; for example, it is theoretically possible that atest taker with very low
proficiency has all items of a difficult test correct, just asit is possible that afair coin when tossed one
thousand times lands ‘heads’ every time. Y et, if the latter event happens, we will not accept that the
coin isfair (and the tossing was done without cheating), and we do so on statistical grounds: the
observational outcomeis so unlikely under the hypothesis (that the coinis fair and the tossing has
been fair) that we rgject the hypothesis. The checking of IRT models follows the same rational e,
although the hypothesisis much more complex than the hypothesisin a coin tossing experiment.
Before discussing statistical testsin some more detail, we give asmall example of a statistical test as it
is used in the program package OPLM. Although the result of atest isusualy anumber (at-value or a
chi-sguare value, possibly decorated with one or more stars to indicate the level of significance), in
some cases it is possible to construct a graph which can be much more informative than asingle
number. Two such graphs are shown in Figure G.5, and will be commented upon.

Rel.item#: 11 Abs. item# 11 Label: Item_11 [:1] Rel.item#: 11 Abs. item#: 11 Label: Item_11 [:1]

&

22 17 17 15

Figure G.5. Statistical testsfor asingle item

The graphs result from an analysis on an artificial data set, which has been constructed with the
explicit purpose of showing several characteristics of statistical tests. The artificial tests contains 21
items, al equally difficult. Twenty items comply with the Rasch model; in particular this means that
they al discriminate equally well. One item, however, discriminates better than the other twenty. So
the 21 items taken jointly do not comply with the Rasch model. (The deviating item is number 11).
Starting from known item parameters, artificial data may be created. For the example, 3000 artificial
persons were submitted to the test (thisis accomplished by running a rather simple computer
program), such that as a result we have a data set with the answer of 3000 personsto 21 items. The
next step is to analyze this data set without making use of the knowledge we have of the real
parameters. Thus the data set was analyzed using the Rasch model; more formally we can say that we
use the model as a hypothesis. It isimportant to realize that the estimation procedure in the software
does ‘not know’ that the Rasch model is not valid; it is nothing €l se than a mechanical handling of
numbers, designed to solve a set of (complicated) equations. If the program is (technically) successful,
this means nothing else than that the equations are solved, but it does not follow in any way from this
that the model isvalid.

After the estimation, however, we can do something which is not possible in Classical Test Theory. If
we know the item parameters of the Rasch model, then we can compute the probability that somebody
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with ascore of 15, say, will have a correct response on item 11, say. (This computation is rather
complex, but the software takes care of this.). Suppose that this probability is 0.6. This means that we
expect that in the group of students with atest score of 15, 60% will give a correct response to item
11. But this percentage is observable: we can find in the data set al students with a score of 15, and in
this subgroup we can count the number of people with a correct response to item 11. Suppose that
96% of these students have item 11 correct, alot more than predicted by the model. This means that
the observations (the observed percentage) do not correspond closely to what we predict; so our
prediction is wrong. But the prediction follows mechanically from the assumption of the Rasch model,
and therefore the Rasch model must be wrong. In Classical Test Theory asimilar procedure is not
possible, because there is no way to predict how students with a score of 15 on the test should behave
onitem 11; the theory is so weak that it cannot make any such prediction.

The procedure described in the preceding paragraph can of course be applied also to the group with
test scores 1, 2, 3 and so on up to the highest possible score. But if we do thisfor al scores, we
construct atable with predicted and observed percentages correct, and from this table we can construct
agraphical representation. Thisis essentially what is displayed in the left-hand panel of Figure G.5.
But there are some more things to be said on this:

1. With 21 items, 22 different test scores can be obtained (0 to 21). But if your test scoreis zero, the
probability that you haveitem 11 correct must aso be zero, and it isimpossible to find a person
with atest score of zero and item 11 correct. So in this case, the predicted and observed
percentages correct are zero by definition, and this case is uninformative. The same holds for the
group with the maximum test score, where observed and predicted percentages correct must equal
to one hundred. So these two scores can be discarded.

2. With the remaining scores, 20 groups can be formed, but in cases where the sample sizeis rather
modest, some of these groups will contain very few test takers, with the consequence that the
constructed graph may look quite erratic. Therefore, groups of scores are defined, much asin the
technique of graphical item analysis — see Section C. The groups are formed in such away that
they contain (approximately) an equal number of test takers. In the example, seven such groups
have been formed.

3. For each group the predicted percentage of correct answers onitem 11 is computed. This
percentage can be plotted against the group number. The plotted points can then be connected by
lines. If the connecting lines are smoothed, one smooth line of predicted percentages will occur. In
Figure G.5 thislineis the middle one of the three smooth lines (blue if color isavailable).

4. In each of the seven score groups one can count the number of people with a correct response to
item 11, and convert this number to a percentage. In Figure G.5 these percentages are plotted as
crosses or bullets, and then connected by straight lines to give visual support. This curve with
broken linesis sometimes referred to as the empirical item response curve. Notice that it is the
same curve that is constructed when applying techniques of graphical item analysis.

5. Essentialy, the test consists of acomparison of the empirical and the predicted curves. Clearly, in
the left hand panel of Figure G.5, the two curves differ markedly from each other, meaning that
the predictions are grossly wrong. But the problem isto have a clear definition of what we call
‘grossly wrong'. In the software package OPLM two tools are available which can be helpful in
judging the discrepancies between predicted and observed percentages. These are discussed next.

6. Suppose there are 500 students in the sixth score group, and the predicted percentage of correct
responsesin this group is 80. If the model is correct, we expect 0.8 x 500 = 400 correct responses
in this group, but thisis not the same as requiring that exactly 400 correct responses should be
observed. Everybody will agree that we should observe about 400 correct responses. But what do
we mean by ‘about’ ? What one can do, for example, isto define a 95% confidence interval around
the expected value of 80%, and require that the observed percentage falls within thisinterval. If
such aninterval is defined for all score groups and the upper and lower bounds are plotted and
then connected by a smooth line, akind of envelope around the theoretical curve results. In the
left-hand pand of Figure G.5 the two outer smooth lines (gray in acolored figure) define this
envelope, and now we see clearly that five of the seven observed percentages fall outside the
envelope, indicating clearly that the behavior of item 11 is quite different from what the model
predicts. (Observed percentages falling outside are plotted as bullets, those inside as crosses.)

Section G: Item Response Theory, page 10



7. Theleft-hand panel of Figure G.5, however, is an easy case: the difference between the two curves

is so marked that it hits the eye, and a correct conclusion would also be drawn without the aid of
the envelope. But things become more complicated if six of the seven observed percentages fall
within the envelope and one lies (alittle bit) outside. What we need in such a case is an answer to
the question whether the difference between the predicted and the observed curves — both
considered as a whole — can be attributed reasonably to random fluctuations, given that the Rasch
model is the correct model. To do this we need a more formal criterion, whichis provided by a
statistical test. In the present case a quantity, labeled Sy; (because it is concerned with the 11"
item) is computed from the differences between the two curves. Itsvalueis 180.3. It can be
compared to a so-called critical value in the theoretical chi-square distribution (with 6 degrees of
freedom). At the 5% level of significance thiscritica valueis 18.55. Since the observed valueis
larger than the critical value, the hypothesis that the difference is due to random fluctuationsis
rejected.

The added value of agraph like Figure G.5 isthat it does revea that the Rasch model is not avalid
model here, but it gives dso information why thisis so. The empirica curve is much steeper than
the predicted one, indicating that the item discriminates better than predicted by the Rasch model.
The confidence envelope in the |eft-hand panel of Figure G.5 is quite narrow. The reason for this
isthat the number of test takersin each group islarge (on the average 3000/7 = 429). The sample
size has a definite influence on the outcome of the statistical test. To illustrate this, arandom
sample of 175 test takers was drawn from the original 3000 artificial test takers, and the responses
of this small sample was analyzed in the same way as the original sample. The graphical outcome
of the statistical test for item 11 is displayed in the right hand panel of Figure G.5. We see
immediately that the confidence envelope is much broader now, and we also notice that the
empirical curve falls within the envelope, with just one borderline group. The statistical test yields
anon-significant result. The value of Sy; equals 4.89 while the critical chi-square value with 3
degrees of freedom is 12.84. (With such a small sample size only four score groups are formed;
the number of degrees of freedom is the number of score groups minus one.) The important result
here is that we do not have sufficient empirical evidence to regject the hypothesis that the Rasch
model isvalid, although we know it is not, because we work with artificial data which do not
comply with the Rasch model.

We generalize this example somewhat and introduce at the same time some important theoretical
concepts:

1

In statistical testing, we alwaystest a hypothesis. This hypothesisis called the null hypothesis. In
the present example this hypothesisis quite complex and may be worded as follows: “ The 21
items together comply with the Rasch model, and as a consequence the predicted and observed
curves for item 11, asgivenin Figure G.5, will not differ more than can be explained by random
fluctuations.”

Although random fluctuations may cause big differences, we will rgect the null hypothesisif the
differenceisvery big. The notion of ‘very big' isformalized in statistical theory as follows: From
the difference between the two curves, a certain quantity can be computed which we label here as
Sy If the null hypothesisistrue, we know from statistical theory that thereis a probability of
5% that the quantity will have avalue which islarger than the critical value of 18.55 (when we use
7 score groups). We may take that risk of 5%, and decide that we will reject the null hypothesis if
we observe indeed that S;; > 18.55. It isimportant to understand that thisrisk only appliesif the
null hypothesisis true indeed; but we do not know thisin general. Moreover, therisk of 5% is
widely accepted in the scientific community, but in principleit is arbitrary. Thisrisk level iscalled
the level of significance.

The computation of the quantity Sy, istechnically quite complex (one cannot check it quickly on a
piece of paper), and the mathematical proof that one can use the critical value of 18.55 (or more
generally, that one can use the tables of the theoretical chi-square distribution) is quite complex,
and will not be discussed here.

The preceding, however, tellsonly haf of the story. It was used to find a decision rule, which is
based roughly on the following rationae: “If the null hypothesisistrue we will (often) find a small
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value for S, but if the null hypothesisis not true, it ismore likely to find big values. So let us
decide now that we reject the hypothesis if we find a big value and we do not reject if wefind a
small value.” In the preceding paragraphs, it was admitted that we can find also big valuesif the
hypothesisistrue, but we have a calculated risk: we set the decision rule (the borderline point
between ‘small’ and ‘big’) such that we make the wrong decision in only 5% of the casesif the
hypothesisistrue. But we till have to discussthe risk if the hypothesisis not true.

Thisis amuch more complex situation: if the 21 items jointly do not comply with the Rasch
model, this may be so for many reasons. In the example, it was told what the reason was. 20 items
did comply with the Rasch model, and just one item discriminated better than the others. But even
in this case, we are not fully informed: it may be that item 11 discriminates just atiny little bit
better than the other items, or it might discriminate much better. In the former case, it isnot
reasonabl e to expect that big values for the quantity S;; are very likely, while in the latter case big
differences will be much more likely. Suppose that in the former case there is a probability of 6%
to find an S;; quantity larger than 18.55, whilein the | atter the probability is as high as 88%. But
this means that in the former case the false null hypothesiswill be rejected in only 6% of the cases.
This means that with our test we only have a probability of 6% to detect a deviation from the
Rasch model, i.e., to reject afalse null hypothesis, while in the latter case this probability is 88%.
Thetechnical term to denote the probability of rejecting afalse null hypothesisis called the power
of thetest. It isimportant to realize that the power depends on the degree of deviation between the
actual test and the model to describeit, i.e., the degree of deviation between the real world (what
wereally observe) and our narrative about the world.

But the degree of deviation is not the only factor which influences the power of a statistical test. In
the example of Figure G.5 the redlity for the left hand panel isjust the same as the reality for the
right hand panel. The fact that we found a significant result, i.e., really detected that the Rasch
model was not valid, with a big sample, and not with a small sampleis not a mere coincidence. It
isastatistical law that the power of a statistical test increases with increasing sample size. Thisis
the main tool by which aresearcher can manipulate the power of the statistical tests he wants to
use. We will come back to this point in later paragraphs.

Sometimes one hopesto reject the null hypothesis. Historically the first applications of
statistical hypothesis testing were in agronomy. To show that afertilizer is effective, asimple
design like using no fertilizers on an number of plots and using a certain dosage of fertilizer on an
equal number of plots, and comparing the crops (using a statistical test) under both conditions,
may lead or not lead to the conclusion that using fertilizersis effective. In such aset-up it is hoped
for that fertilizers are effective indeed — this is the research hypothesis. The statistical hypothes's,
however, isthe denia of this research hypothesis, and it was hoped that this hypothesis could be
rejected. The technical name of such a complementary hypothesisis caled null hypothesis, and
the research hypothesisis often called the alter native hypothesis. In statistical testing it is always
the null hypothesis which is tested, and in experimental science, it is usually hoped that it will be
rejected. If it does not succeed (the test result does not yield significance), thisis not to be taken as
strong evidence that the null hypothesisistrue, but as alack of empirical evidence to demonstrate
thetruth of the research hypothesis. This can be understood by using the concept of power: itis
possible that the effect of fertilizersis positive, but rather small (perhaps because the doseistoo
low). If at the same time the number of plots used in the experiment, i.e., the sample size, is rather
modest, the test used may have little power, i.e., the probability of rejecting the null hypothesis
may be very low.

But sometimes one does not hopeto reject the null hypothesis. When one uses an IRT model,
like the Rasch model, the model itself is the research hypothesis. Users of such amodel may like it
because it is parsimonious and gives a description of (part of) the reality in quite smple terms. But
such amodel isnot valid just by positing it; it must be tested, just like a newly designed car must
be tested. With probabilistic models, the tests are statistical, but the important difference with
experimental research isthat the model itself is the statistical null hypothesis, and thusitisin the
interest of the proponents of the model not to reject the null hypothesis. Although the technical
machinery (the formulae, the way of reasoning, the use of statistical tables, etc.) isjust the same as
with testing in experimental research, the general context is essentially different. Statistical tests
used to show the adequacy of a probabilistic model borrow their strength by showing that the
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observations, or some aspects of it, fit well with the predictions ensuing from the model. Therefore
they are usualy called goodness-of-fit tests. A non-significant result is often interpreted as
evidence in favor of the model, but one should be very careful with such areasoning. One could
use atest with almost no power (for example by using a very small sample size), such that oneis
almost sure that no significance will be found. Of course thisis not strong evidence in favor of the
model, although sometimesit is presented as such.

9. Thereexist many different tests of goodness-of-fit for the Rasch model or other IRT-models. In
the preceding example with the artificia data, the deviation between the (artificial) reality and the
Rasch model concerned the equality of the discriminative power of all items. The S;; quantity was
designed especially to be sensitive for differencesin discrimination of item 11 compared with the
average discrimination of the other items. But of course, asimilar quantity can be computed for
the other items aswell (S; for item 1 up to S,; for item 21), and al these quantities can be used in
asimilar statistical test, which in general tests the validity of the Rasch model for the 21 items.
But of the 21 tests (which all were carried out in the analysis with 3000 test takers), only Sy,
yielded a significant result. If we repeat the whole procedure a thousand times, i.e., if we construct
1000 samples of 3000 artificia respondents, it is very probable (and indeed this has been done),
that we will get a similar result in the majority of the cases: Sy; leading to a significant result and
the others not or avery few times (in fact alittle bit more than 5% of the cases for each of the
other tests). This means that the test based on S, for example, has very little power to detect the
deviation from the Rasch model, while the test based on Sy; has very much power.

10. Differencesin discrimination, however, are not the only possible reason why the Rasch model
may be invalid. An important assumption of the model is unidimensionality. This means that all
items should be indicative jointly of just one underlying latent variable. Now suppose that a test
for English is constructed which consists of 20 reading items and 20 listening items by a
researcher who is convinced that the distinction between reading and listening is just a matter of
convenience but has nothing to do with really different proficiencies, i.e., heis convinced that in
the target popul ation the proficiency for reading and for listening have a correlation equa to one.
Notice that thisis not atrivial problem, and the researcher’ s hypothesis cannot be refuted simply
by showing that the correlation between reading and listening test scores (as observed in the
sample) islessthan one; see the discussion on attenuation in Appendix C. A possible approach,
which in fact is used quite often in the social sciences, is ‘to show’ that the reading and listening
items jointly comply with the Rasch model, or some other more complicated but still
unidimensional IRT model. The demonstration is usually carried out by applying a series of
statistical tests which happen to be available in one' s favorite software package for IRT. If this
package happens to be OPLM, thereislittle chance that the model will be rejected, eveniif in
reaity the correlation between reading and listening is substantially lower than one. The reason is
that the tests implemented in OLPM have little power against multidimensionality. If thisis
combined with a moderate sample size, probably not a single test will lead to significance. But as
ademonstration of the ‘truth’ of the researcher’s hypothesis, the whole procedure is not
convincing.

11. The preceding paragraph may look disappointing, and in some respects, it is. For many widely
used gtatistical testsin IRT thereislittle or no insight into their power characteristics. Thistopic
has been neglected widely, in research aswell asin education. In some introductory statistics
books the concept of power is not even introduced. And the technical complexity to carry out a
statistical test probably leads to obscuring the necessity of power considerations. Y et, technicality
and quality are not synonyms. Sometimes it is much more convincing to bring about evidence by
simple means than by some highly sophisticated technique which is beside the point. The
researcher referred to in the previous paragraph would be better off if he used atechnique whichis
especially designed to uncover a multidimensional structure, such as factor analysis.

The main points of this section are summarized below.

1. An IRT-model is a hypothesis about how the data come about. Its validity (appropriateness)
must be demonstrated.
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2. Since most IRT models are probabilistic, the test of the model will be mainly based on
statigtical tests.

3. Formally the model and specific consequences following from it have the role of null
hypothesisin the statistical test.

4. Mot tests try to demonstrate that predictions following from the model are in good
correspondence with the data. If they are, this can be taken as evidence in favor of the model.
5. An important concept in statistical testing is power, the probability that one can demonstrate
(by a significant result) that the model is not valid. The most important tool to manipulate the
power isthe sample size: the larger it is, the more power.

6. Since the model is complex, it may be defective in several ways. Particular tests are
sensitive to some defects but not to others. It is good practice to apply all statistical tests
available in the software one uses. Professional assistance may be needed for a correct
interpretation of the results.

G.4 Go and measure

The preceding sections on estimation and statistical testing are concerned with the construction of the
measurement instrument, and the demonstration that the theory underlying the model is valid for
describing the test behavior of test takers from the target population. If the evidence is strong enough
to justify the conclusion that the model is trustworthy, then one can proceed to use the test asan
instrumental tool. In terms of the model, this means that the answers of atest taker are used to make an
estimate of his position on the underlying continuum, i.e., to make an estimate of the person’stheta
value. This estimate is usually computed by the same software that is used for doing the calibration. In
section G.6 some technical details on these estimates are discussed. In the present section we will treat
some topics of a more conceptua nature.

1. Theestimate of aperson’sthetavalueis not equal to the rea theta value. The estimate is based on
the response pattern of the test taker. The theta valueitself is considered as a stable characteristic
of the person, but if the test is administered twice (assuming in-between ‘brain-washing’) it is not
very likely that we will observe twice the same response pattern, and therefore we will probably
end up with two different estimates of the same theta value. The accuracy of the estimateis
expressed by its standard error. Usually the standard error islarger for response patterns with an
extreme high or an extreme low score than for response patterns in the middle of the score range.
This has to do with the concept of information: if atest istoo difficult for John, he will probably
end up with alow score, but the amount of information collected by the responsesislow. So,
essentially, what we learn is not much more than that the test isindeed too hard, but we cannot
infer with high precision the location of John’s position on the underlying continuum, and thisis
reflected in a (relatively) high standard error. In Section G.7 it will be explained how this
information can be computed.

2. Inthe section on estimation, it was explained that the amount of information we collect on an item
parameter will increase as the sample size increases, because every test taker answering a
particular item adds to the information about the item. A similar reasoning holds for the estimation
of theta, but we do not collect information on John's theta by the answers of Mary. So, the
information on John' s theta must come from the answers of John himself, and the only way to get
more answers is to make the test longer: The standard error of the estimate of theta depends highly
on the test length, but also here does the square root rule apply: to halve the standard error requires
four times as many items.

3. Tocompute the estimate of theta, one needs to know the value of the item parameters, but these
values are not known exactly. What is used in the computation are the estimates of the item
parameters as they become available in the calibration phase. But these estimates also contain an
error, and this error is usually ignored in computing the standard error of the theta estimate. So in
fact, the standard error of the theta estimate is larger than reported by the software. If the
calibration sampleislarge, this extraerror is not too important, but if the calibration is done on a
small sample, the extra error may be considerable.
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4.

6.

In the Rasch model, al test takers with the same raw score (number of items correct) will have the
same estimate of theta; in the two-parameter model, all test takers with the same weighted score
have the same theta-estimate.
The correlation between the theta estimate and the score is usually very high (even over 0.99).
This observation makes many researchers say that using IRT instead of classical test theory has no
added value. Thereis atheoretical and a practical reply to this:
a. InClassica Test Theory we can learn something about the characteristics of test scores,
e.g. their reliability in some population, but the theory by itself does not offer acriterion to
judge the meaningfulness of including a particular item from a set of itemsin the test. For
example, it cannot be deduced from Classical Test Theory whether listening and reading
items can be combined meaningfully in the same test (yielding a single number as test
score), or not. In IRT, thisis quite possible, and even essential, because the theoretical
construct one wants to measureis at the center of the theory itself. If listening and reading
arereally two different concepts, then listening and reading items together will not comply
with aunidimensional IRT-model. So, in this sense, using aunidimensiona IRT model
(and demonstrating convincingly its validity) can be considered as the judtification to
summarize the test performance by a single number. If this number is the test score or the
theta estimate is not important, at least if everybody takes the very same test.
b. Themost important practical advantage of using IRT is that one can meaningfully
compare performances on different tests. Suppose John takes a reading test consisting of
30 items and obtains araw score of 22; Mary takes another reading test, consisting of 35
items and gets a score of 24. In the framework of Classical Test Theory thereis no rational
way to infer from these two observations whether Mary’ s reading proficiency is higher or
lower than John's. In IRT, however, thisis very well possible, on the condition that the
items of both tests have been calibrated jointly. The comparison usually takes place by
comparing John’s and Mary’ s estimated theta. It is precisely this practical advantage that
forms the basis for computer adaptive testing.
It may be good to end this section with a caveat to overoptimistic proponents of IRT: using an
IRT-model does not convert abad test into a good one. A carel ess construction process cannot be
compensated by a use of the Rasch model; on the contrary, the more careless the test is composed,
the greater the risk that a thorough testing of the model assumptions will reveal the bad quality of
the test. In thisrespect, it isimportant to reconsider the very definition of IRT models: the model
says that thereis a particular relation between the latent variable and the response probabilities,
meaning that somebody with a high theta value has a higher probability of a correct response than
someone with alow theta value. But thisis a conditional statement: “ if somebody with a high
theta value takes the item or the test, then etc..”. It does not follow from this statement that there
actually exists somebody with a high theta and another somebody with alow thetavalue. To see
the implications of this, suppose that in some popul ation the Rasch model is valid for three items,
with difficulty parameters of —1, 0 and +0.5 respectively. Suppose further that in this population
everybody has a theta value between —0.1 and +0.1. The situation is displayed graphicaly in the
left-hand panel of Figure G.6; the place where the members of the population are situated is
marked by a bold piece of the x-axis. In the right hand panel of Figure G.6, we have zoomed in on
thefirst display, just to show what will happen in this particular population, and the remarkable
thing is that for the theta-values in this small range, the three item response curves are amost flat.
This meansthat every member of this population has almost the same probability of answering
correct each of the three items, but this means the same thing as saying that the expected score on
the three items together will be almost the same for everybody. Remembering that expected score
is the same as true score in the terminology of Classical Test Theory, this means that the true
variance will be very near zero, and thus that in this population the reliability of the test will also
be near zero
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Figure G.6. The Rasch model with different ranges of theta

actual theta values

The important thing to learn from Figure G.6 is that the Rasch model may be valid in a population
even if the response curves are dmost flat over the range of theta values which are present in this
population. But if thisisthe case the reliability of the test will be very low, and make the test
practically useless for individua measurement. The practical consequence isthat a separate
assessment of the test reliability is needed; it cannot be inferred from statistical tests of goodness-
of -fit.

G.5 Thebasic equations

Thelogigtic function isa mathematical function which has a very specia form. If x isthe argument of
the function, the function rule of the logistic function is given by

F()=—2

e
1+¢€*

where e isamathematical constant which equals 2.71828... (eisavery important number in
mathematics, so important that it has received its own symbol, the letter e)) Notice that in the function
rule, xis an exponent of the number e. Because sometimes the exponent of eis not a simple symbol,
but a quite long expression, using the notation as above may lead to confusion (we do not see any
more that the whole expression is an exponent). Therefore, another way of writing down the very same
thing is more convenient, and used quite commonly. Hereitis.

1+exp(x)
Theformulae (G.1) and (G.2) are identical, and are said to be the standard form of the logistic

function. Notice that it isimportant to recognize the logistic function. It isthe “exp of something
divided by one plus the exp of the same something”.

(G.1)

(G.2)

In the Rasch model the item response functions are al logistic functions of the latent variable 8. Here
isthe function rule for these functions

__exp@-5)

() 1+exp(@-1)

(G.3)

We comment on this function rule:

1. Theright hand side of (G.3) isthelogistic function. The “something”, however, isnot just &, but
6 - [ . Sothelogistic function isnot in its standard form.

2. Thefunction symbol f has asubscript i (referring to the item). This means that the function rule for
each item can be written asalogistic function. So, (G.3) does not define a single function, but a
family of functions.

3. If welook at the ruleitself (the right hand side of (G.3)), we see that thereis only one entity which

depends on theitem, i.e., thereis only one symbol which has the subscript i, namely, 8 . Thisisa
number, which we leave unspecified here (and therefore it is a parameter). If we choose avalue
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for this parameter, then we can compute the value of the function for every possible value of &. If
we plot these function values against &, we get a curve like in the right-hand panel of Figure G.1.

In the two parameter logistic model, the function ruleis given by
t (0= _Pla@-p)

7 1rexp[a(6-5)]

and here we see that the function rule has two entities with subscript i, i.e., the function rule defines a

family of functions with two parameters. The parameter g; is the discrimination parameter. It must be

positive. If it isvery near zero, the curve of the function isamost flat (at avalue of 0.5); if it isvery
big, the curve looks very much like a Guttman item (see the left hand pand of Figure G.1): it increases

very steeply for values of 8 which arevery closeto £ . For smaller valuesit is very near zero, and
for larger valuesit is very near one.

(G.4)

OPLM uses also the function rule (G.4), but in its use it is assumed that the discrimination parameters
a; are known, and do not have to be estimated from the data.

There exists also a model with three parameters which is commonly denoted as the three parameter
logistic model. Its function rule is given by
expla (6-4)]

fi (@) =¢ +(1_C')1+exp[a1-(6_i8i)]

(G.5)

Here are some comments:

1. Theparameter ¢, isanumber between zero and one, and is usualy called the guessing parameter
(or the pseudo-guessing parameter). It can be understood as follows: suppose that ¢; = 0.25. If the
value of & isvery low (say, -100), then the fraction in the right hand side of (G.5) will be very
close to zero, but the function value itself will be very close to 0.25. This may be useful when
using multiple choice items. If there are four alternatives in the item, and if the ability is very low,
thereis still a probability of 0.25 of getting the item right by pure guessing.

2. Thefunction rule of (G.5) is not the logistic function. So, designating the model as alogistic
model is not justified, but it is often referred to with that name.

3. Themode isvery popular inthe U.S.A. but far lessin, e.g., Europe and Australia. An important
reason for such reservationsisthat it is very difficult to estimate the parameters in this model, and
that often the estimation procedure fails unless one has very big samples (and thisis more
common in the U.S. than in Europe or Australia.) There are, however, a'so more subtle
mathematical and philosophical reasons at the base of this‘global’ disagreement.

G.6 Theinformation function of a test

In section G.2, the concept of information was discussed in relation to the estimation of item
parameters. It is quite hard to explain this concept further — even graphically- because it concerns the
information about many parameters at the same time. Once the item parameters are known (or fixed at
their estimated values) and we turn to the estimation of theta, the problem becomes a bit simpler,
because in such a case we have only one unknown quantity, namely, thetaitself.

Without discussing the mathematical background of the information concept, it may be instructive to
look at the formulafor the item information in the two-parameter logistic model. Hereit is:

1;(0) = aiz f(O)[1- (0] (G.6)
and we comment on it:
1 Thefunction symbol is| (for information). It is afunction of theta, and every item has its own
function, hence the subscript i.
2 Thefunction f; is the item response function as defined by formula (G.3), and & isthe dis-
crimination parameter of itemi. The formulais aso valid for the Rasch model, because this
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model is aspecial case of the two-parameter model, where al the discrimination parameters are
equal to one.
3 Theinformation function is always positive, whatever the value of theta, but it is not constant: it

reachesits maximal value in the Rasch model and the two-parameter model if f,(8) =0.5and

this happensif 8 = 3. In the Rasch model (where & = 1) the maximal information of anitemis

0.5x (1-0.5) = 0.25.
Because of the assumption of statistical independence of the item responses, the information functions
for several items may simply be added. Therefore the information function of atest isthe sum of the
information functions of the items, which, with aformula, can be written as

1(O)=Y1,(6) =Y a1, (O)1-1,(8)] (G7)

where the subscript t refers to the whole test. As an illustration, the information functions of the four
itemsin an example test are plotted separately in the left hand panel of Figure G.7. Their sumis
plotted in the right-hand panel. The items comply with the Rasch model, and their difficulty

parametersare: 5, =-1, 3,=-09,5,=08 and S, =1.1.
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We comment on these figures:

1. Intheleft-hand panel, the four curves reach their maximal value at the value of the item
parameters (-1, -0.9, 0.8 and 1.1 respectively). Theinformation value at these pointsis 0.25 since
we are using the Rasch model. We see that the two easy items do convey very little information
for high values of theta, and the difficult items have low information for low values of theta.

2. Theright hand panel displays the sum of the four curves from the left-hand panel (notice the
different scales used for the y-axes in both panels). Its maximum value (about 0.75) is at atheta
value near to zero. Thisis an important observation: none of the four items hasits maximal value
near zero, but the sum has. We a so observe that the curve on the right hand side is flatter than any
of the curvesin the left-hand panel, meaning that the different contributions of the four test items
are spread out along the latent continuum.

3. Thisfinding may be alittle bit counterintuitive. Sometimes the argument is heard that, in order to
have a good spread of the information the item parameters must be spread evenly. We investigate
this abit more deeply. The preceding example is atest with two (small) clusters of items. In
Figure G.8 (left panel) the information function of thistest is displayed together with the
information function of afour item test with difficulty parameters equal to —1, -0.33, +0.33 and +1
respectively. In the right-hand panel, the information functions for the example test and a four
item test with all item parameters equal to zero is displayed. (The curve for the example testisin
black, the others are in red and have thicker lines.)
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Figure G.8 Comparison of test information functions

From the left-hand panel, we see that the information function of the example test, with two
clusters of items results in aflatter information function than the test with evenly spread item
parameters. In the right-hand panel the curve isfairly peaked at the value of the single common
difficulty parameter (zero), while further away the information decreases rather fast.

In designing atest, it is useful to construct graphs of the information functions of several tests, and
to keep in mind the main use of the test. If the main purpose of atest is selection (such asa
decision who failed and who passed in an examination), then the test is best composed of items
having their difficulty in the neighbourhood of the cut-off theta value. Suppose one decides that a
candidate has succeeded an exam or is accepted for ajob if histhetavalueislarger than zero.
Then the best test in the framework of IRT is one with all difficulty parameters equal to zero,
because this maximizes the information at that theta value. This means that candidates with atheta
value near zero will have their theta estimated with the smallest standard error. For candidates
further away from the cutting point, the standard error will be larger, but thisis not very important,
because for an apt candidate (say with atheta value of 1.5), it does not matter very much if we end
up with an estimate of one or two; he will (with very high probability) be accepted anyway.

If on the other hand, it is the purpose to estimate the theta value of every candidate as accurately as
possible, oneis better off with avery flat information function. In the left-hand panel of Figure
G.9, areasonably flat information curveis constructed with 18 Rasch items. The amount of
information is at least two (which corresponds to eight maximally informative items) in the range
(-2.5, +2.5). If thistest were applied in a population where thetais normally distributed with a
mean of zero and a SD of one, about 99% of the population members could be measured with
about equal accuracy (corresponding to eight to ten optimally adapted items). This may look as an
admirable accomplishment, but there is a serious drawback. In the right-hand panel of Figure G.9,
the frequency distribution of the difficulty parametersis displayed, showing that 14 of the 18
items are either difficult or easy, and only a minority of four items has medium difficulty. Thisis
what always will happen if one tries to construct flat information functions: the item parameters
will contain acluster of difficult and a cluster of easy items, the items of medium difficulty being
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Figure G.9. A flat information function and the distribution of parameters
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7. But what does this mean in a practical application? The weak students will be frustrated by the
cluster of difficult items and the good students will be bored by the easy items, while in both cases
the extreme items — either the easy ones or the difficult ones - will provide very little information.
So, it may turn out profitable if wetry to construct tests which are more adapted to the level of the
test taker. With the foregoing example we might construct an easy test, consisting, for example, of
the easy and medium items, and a difficult test consisting of the medium and difficult items. In the
left-hand pand of Figure G.10, the information curves for the two tests (each having 11 items) are

displayed.
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Figure G.10 Information curves for an easy and a difficult test

8. Thetests thus composed do not reach the previous level of at least two units of information in a
small range around zero. We may repair this by adding one or two items of medium difficulty to
each test. The result with two items added is displayed in the right hand panel of Figure G.10.

9. Summarizing then

a

b.

C.

We have constructed two tests of 13 items each. Both tests have six itemsin common and
seven unique items, giving atotal of 20 items.

The easy tests yields information values of at least 2 in theinterval (-2.50, +0.42) and the
difficult test reaches thisvaluein theinterval (-0.42, 2.5).

Inthe interval (-0.42, +0.42), both tests reach an information value of at least 2, and in a
sense, they are exchangeable

If the theta values in the population are normally distributed with mean zero and SD equal
to one, about 99% of the theta valuesfallsin the range (-2.5, +2.5). The percentage of
people falling in the range (-0.42, +0.42) is 32, about one third of the population.

Of course, we only gain considerably if we succeed in administering the easy test to the
weak students and the difficult test to the good students. This means that we need akind
of pretesting to assign students to the easy or difficult test. Because of the safe buffer zone
comprising about one third of the population, where it does not matter very much which
test is used, things only go wrong if a student belonging to the weakest third of the
population is given the difficult test, or the other way around. So, the pretest does not have
to betoo accurate. In many cases the judgment by the teacher will suffice.

Notice that with these two shorter tests, the estimated theta values from both testslie on
the same scale, and are comparable. Of course thisis only possible if the items of both
tests were calibrated together.

It may seem that there was something arbitrary in the preceding example, namely, the
assumption that the population mean is zero and the SD equal to one. Thisistrue for the
example, but in practiceit isfairly easy to make a quite accurate estimation of mean and
SD using MML in the calibration, and the procedure of the example can easily be adapted
to the results. The only assumption that remains arbitrary is the assumption of the normal
distribution, but for this application, thisis not very important.

10. All the figuresin this appendix have been constructed with the program EXCEL, including all the
computational work with the formulae. If one masters the basic operationsin EXCEL, this goes
very quickly. Therefore, it is strongly advised to construct graphs of item response functions and
information functions as much as possible, and to experiment with them to see the conseguences

Section G: Item Response Theory, page 20



of test construction and possible changes in it. For the inexperienced reader, the construction of
figureslike Figure G.10 will be explained step by step in Section G.8.

G.7 Estimation of the latent variable &

Once the cdibration phaseis successfully finished the item parameters of the items are considered to
be known to a sufficient degree of accuracy, and one can say that the measurement instrument is now
ready to be used in the field. But the basic observations we collect when administering atest are the
answers of atest taker to anumber of items, and these answers are converted into item scores. We will
stick here to the smplest case of binary scores: the test taker getsa score of ‘1’ for each correct answer
and ascore of ‘0" for anincorrect answer. If there are 30 items in the test, our observation consists of a
string of 30 zeros and ones, and this string (called the response pattern) must be converted into an
estimate of the test taker’s latent value @ . The purpose of the present section is to show in some detail
how this works.

The problem is not very simple. In fact, there exists several ways of estimating theta values from the

observed responses, each having advantages and disadvantages. We will consider three important

ways of estimating theta:

1. Themaximum likelihood estimator, dicussed in Section G.7.1. In this section the concept of
likelihood and of maximimum likelihood (ML) estimation will be discussed in some detail.

2. In Section G.7.2 the concept of bias of the ML-estimator will be explained, and another estimator
(the so-called Warm —estimator) which has far less bias will be introduced.

3. In Section G.7.3, at last, an estimator which uses more information than contained in a specific
response pattern will be discussed. This estimator fits nicely in a branch of statistics know as
Bayesian statistics.

G.7.1 Maximum likelihood estimation

To use as few formulae as possible, we will use the same example of afour-item test asin section G.6:
the test complies with the Rasch model and the item parametersare: 8, = -1, B, =-0.9,4,=0.8

and B, =1.1. Of course, we do not know the ‘true’ value of the item parameters, but in practice one

uses the estimates of the item parameters as issued in the calibration phase, and treats them asif they
were the true values.

Two response patterns will be studied, John’s and Mary’s. Both have two correct answers and two
errors. John's pattern is (0,0,1,1) and Mary’sis (1,1,0,0). Mary’s pattern looks more like what we
would expect; she gave a correct answer to the two easiest items, and could not solve the two hardest.
In John's pattern we see just the opposite: he failed on the two easy items, but got the two hard ones
correct. So, one might expect that John’ s response pattern is evidence of higher ability, and that
therefore the estimate of John’ s theta should be larger than Mary’s. We will see that thisis not the
case.

We will investigate the likelihood of John’ s response pattern. Using formula (G.3) of Section G.5, and
substituting the unknown item parameter value by the value we know from the calibration ( 8, = -1),
wefind

exp[& - (-1)]
1+exp[d—-(-D)]
and of course, the probability of an incorrect response is one minus the probability of a correct
response:

P(item 1 correct) =

(G.8)
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explf - (-] _ 1

P(item 1 incorrect) =1— =
1+exp[@—-(-D] 1+exp[d —(-D)]

(G.9)

We cannot compute from (G.8) or (G.9) the probability that John will have the item correct or
incorrect, because we do not know the value of John’ stheta: the right hand sides of (G.8) and (G.9)
are functions of theta. But we can substitute the symbol & in these formulae by an arbitrary number
and compute the value of the probability. Suppose we use zero for the value of theta, then we find for
the probability of a correct answer 0.731 (and 1 — 0.731 = 0.269 as the probability of an incorrect
response). So, what we could say thenis: if John's theta value were zero, the probability of observing
what we did observe (namely, an incorrect response to item 1) is 0.269. We can compute this
probability for other values of theta as well, and we can repeat the whole procedure for the other items.
This has been done for three values of theta, and the results are displayed in Table G.3, where each
row corresponds to an item. Observe that the first column is precisely John's response pattern.

Table G.3 Probabilities and likelihood

observed resp. 6=-1 =0 =1
0 0.500 0.269 0.119
0 0.525 0.289 0.130
1 0.142 0.310 0.550
1 0.109 0.250 0.475

likelihood 0.004063 0.006025 0.004042

In the preceding paragraph it was explained how to determine the probability of an observed response
for asingleitem. But there remains to determine the probability of a whole response pattern, i.e., the
probability of the four observed responsesjointly. To do thisin general is not an easy problem, unless
aspecia assumption isintroduced. This assumption is the assumption of statistical independence. In
the present context it saysthat once the value of thetais given, the probability of a correct response on
some item does not depend on the responses given to the other items. More concretely: suppose John's
theta value equals—1, then the probability that he will have the fourth item correct is 0.109, whatever
his responses have been on the other items. This assumption is omnipresent in IRT (and in many other
models aswell), and if it isfulfilled, then we have a very simple but powerful rule: the probability of a
response pattern is just the product of the probabilities of the item responses. These products are
displayed in the last line of table G.3. They are called the likelihood of the observed response pattern.

In Table G.3 the likelihood is displayed for three different values of theta. We see that the likelihood
values are small numbers, but this is not important; the important thing is that the likelihood values
change as theta changes. This means that the likelihood is a function of theta. If we compute the
likelihood for many values of theta, we can display the function graphically. Thisis donein the | eft-
hand panel of Figure G11 for John’ s response pattern. In the right-hand panel, the likelihood function
for Mary’ s response pattern is displayed

Likelihood of pattern (0,0,1,1) Likelihood of pattern (1,1,0,0)
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Figure G.11. Likelihood functions for two response patterns
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We comment on this figure:

1

If one moves from left to right along the x-axis, the likelihood function of John’s response pattern
first increases and then decreases; it reaches its maximum at a theta value of about zero (a more
fine grained computation reveal s that the maximum is at —0.0022). Therefore —0.0022 isthe
maximum likelihood estimate of theta for this response pattern.

In IRT-software where the maximum likelihood estimate is computed, special mathematical
techniques are used to find the estimate quickly (also in the case of many items). It is not
necessary, however, to master these techniques to understand what a maximum likelihood estimate
means.

The right-hand panel of Figure G.11 isthe likelihood function for Mary’ s response pattern. The
curve has exactly the same form as the curve for John. Therefore the maximum likelihood estimate
of Mary’sthetais aso —0.0022, the same as John's.

The eguality of John’s and Mary’s estimates is not a coincidence. In the Rasch model it holds that
all response patterns with an equal number of correct responses get the same maximum likelihood
estimate. This means that in the Rasch model (i.e., when the Rasch model isvalid), all information
about a person’ stheta value is contained in the raw score, and that, consequently, no rational
conseguences can be drawn from the observation that John got the two most difficult items correct
and Mary the two easiest ones.

One should be careful, however, not to turn the argument around and to say that all possible
response patterns with the same raw score are equally likely. This can be seen from a careful
comparison of the two panelsin Figure G.11. The form of both figuresis the same, but the
likelihood values are quite different. For athetavalue of 0.5, for example, the likelihood of Mary’s
pattern is 0.24324, while for John we get a value of 0.00544. (Compare the numbers written next
to the y-axes in both panels of Figure G.11.) Theratio of these two valuesis 44.7, meaning that

the pattern (1,1,0,0) is 44.7 times as probable as the pattern (0,0,1,1). This holds at a theta value of
0.5, but it holds also at all other theta values. If the Rasch model is valid in a population with the
3 -values as given above, and we draw a huge sample of response patterns from this population,

we should observe that the pattern (1,1,0,0) occurs about 44.7 times as often as the pattern

(0,0,1,1). If these two patterns were about equally frequent in the sample, this would be evidence

that the Rasch model is not valid.

A comparison like in the preceding paragraph may be useful in some applications. If one takes a

test, and gets about half of the items right, then it seems reasonabl e that the correct answers will be

given on the easier items and the wrong answers on the hardest ones. With such a reasoning,

John’ s response pattern may look a bit strange or even suspicious. But we should be careful here,

and keep in mind that only a very simple example is discussed. With four items, there are only six

possible response patterns with araw score of two (and we discussed only two of these). With 20

items there are more than 180,000 ways of getting half of the items correct, and with 40 items one

can obtain araw score of 20 in more than one hundred billion ways. So, since it is practically
impossible to list the likelihood for all these response patterns, there results a double problem:

a Weneed adefinition of a‘strange’ pattern, such that we can decide for every observed pattern
inasampleif it is strange or not. There exists arather rapid expanding literature on how to
define and find * strange’ response patterns. (One such a procedure is implemented in the
program package OPLM.)

b But the most difficult problem is how to draw conclusions from the occurrence of strange
response patterns. In high stakes applications (like examinations), cheating behaviour may be
an explanation, but one should be careful with such accusations, because sometimes a more
trivial (and innocent) reason is the cause of ‘strange’ response patterns. Here is an example.
Suppose atest consists of 60 multiple choice questions, which are arranged (approximately) in
increasing order of difficulty. The answers are to be marked by the test takers on two optical
reading forms, one form for theitems 1 to 30, to be answered before the break, and the second
for theitems 31 to 60, to be answered after the break. The answer forms have a standard lay-
out, leaving room for 40 answers, say, per sheet. John isabright student but a bit careless. At
item 3, he skips arow on his form and marks his answer for item 3 on the place for item 4, and
continues to shift arow for the remaining items of the first part. After the break, he starts the
second form and makes no mistakes any more. As standard software for reading optical forms
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7

does not check for such skipping of lines (which would be rather difficult in general), John's

response pattern will ook quite strange, having many errorsin the first (easy) part of the test,

and few (since John is bright) in the second.
In the Rasch model, equal raw scores lead to the same maximum likelihood estimate for theta. In
the two parameter logistic model, a similar result holds but now for the weighted score. The
weight to be used is the discrimination parameter of the item. In the three parameter model, there
is no such thing as a score, and as arule, every response pattern leads to a different maximum
likelihood estimate of theta.
From Figure G.11 (and from Table G.3) something can be said about the accuracy of the theta
estimate for John and Mary. The estimate contains an error, and the (average) magnitude of the
error will depend on the amount of information we collected on John’s and Mary’ stheta. This
amount depends on the true value of theta (which we do not know), but it depends also on the
number of items, which issmall in the example. For atheta equal to zero (which isvery closeto
the maximum likelihood estimate), the likelihood of John’s response pattern is about 0.006 (see
Table G.3), whileat —1 or +1 it is about 0.004. The ratio of these two valuesis about 1.5, meaning
that for atheta value of zero the observed response pattern is 1.5 times as probable than at a theta
value of —1 or +1. Thisratio is not very impressive. It aso means that, when theta moves away
from the maximum likelihood estimate (in either direction), the curve drops but not very fast. The
rate at which the curve drops when departing from the maximum is an indication of the accuracy
of the estimate. To see this more clearly, two likelihood functions are displayed in Figure G.12.
Theflat onein the left-hand panel is the same asin Figure G.11, the steep one in the right-hand
panel comes from atest which has 20 items with the same parameters as the short one, i.e., each
difficulty parameter of the short test occurs five timesin the long test. The score on the long test is
10. (Notice that the y-values of both curves are in adifferent unit; the theta-values, however, are
common so that the differences in steepness are correctly represented; the ratio of the likelihood at
zero and at onein the steeper curveis 7.1. Notice aso that the curve of the likelihood function for
thelong test is very similar to the curve of the normal distribution (and the similarity gets more
striking as the length of the test increases). It isthis similarity (which is a mathematical necessity)
which is used to compute the standard error of the theta estimate in IRT-software.
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0.30 q 0.0015

/_\ 0,001 4

0.0005 +

likelihood
o
N
)
likelihood

o
[N
o

0.00 T T T 1 0.0000 -
- 0.5 1 -1 05

0 0 0.5 1
theta theta

Figure G.12 Likelihood functions for a short and along test

In the left-hand panel of Figure G.13 the likelihood functions are plotted for the response pattern
(1,0,0,0) with ascore of 1 and the response pattern (1,1,1,0) with ascore of 3; their maximaare
located at (approximately) —1.33 and +1.33 respectively. In the right-hand panel the likelihood
functions for the scores of zero and four are plotted, and here we see that the curves do not have a
maximum in the range (-2,+2), but if we make a plot in the range (-10, +10) we will not find a
maximum either. This means that these two curves do not have a maximum, or, more generally,
for ascore of zero and for the maximum score in atest, the maximum likelihood estimates do not
exist. The sameistrue for the two parameter and the three parameter model. Sometimesit is said
that the maximum likelihood estimates for zero and perfect scores are at minus and plusinfinity
respectively, but infinity is not a number. This may cause problems if one wants to compare
average theta estimates in two different groups. Each perfect or zero score gives an estimate of
plus or minus infinity and these cannot be used in computing the average. Replacing these by a
large number or discarding these response patterns are both bad practice. It is better to use other
measures in such a case, like the median estimate. But for such comparisons, it is more efficient to
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use the MM L -estimation method for the item parameters, because it is possible then to estimate at
the same time the average thetain the groups.

Likelihood functions for the patterns (1,0,0,0) and (1,1,1,0) Likelihood functions for the patterns (0,0,0,0) and (1,1,1,1)

T ] r T
1 2 -2 -1 0
theta

0
theta

Figure G.13. More likelihood functions

G.7.2 Thebiasof the ML -estimator of theta

The maximum likelihood (ML) esti matorﬂof theta has two serious drawbacks:
» It doesnot exist for zero and perfect scores;
e Itisserioudy biased.

We first explain what is meant by biasin this context. Suppose John' s theta value equals +1. He takes
atest consisting of five Rasch items. Since the model can only predict the probability of theitem
responses, and not the responses themselves, it follows that the model cannot predict without error the
score on the test. So, with afixed value of theta, al possible scores (in the example from zero to five)
are possible, athough not all with the same probability. If the item parameters are known, thenitis
possible to compute the probability of each score. (The computations are a bit complicated and will
not be explained here). In Table G.4 asmall exampleis given, for the case where dl fiveitem
parameters equal zero. From this table we can infer that there is a probability of 0.384 that John will
obtain ascore of 4 on thistest, but we see also that there is avery small probability that he will fail on
al items.

Table G.4 A (fictitious) distribution of test scores
for athetavalue of +1
score P(score) ML-estimate Warm-estimate

0 0001 (-5) -2.402
1 0019 -1.389 -1.101
2 0104 -0.406 -0.337
3 0283 +0.406 0.337
4 0334 +1.389 1.101
5 0209 (+5) 2.402

Notice that the first two columns together constitute the ‘ private’ distribution of John’s observed
scores as discussed in Appendix C. We can compute John’ s true score, which is the average value of
this distribution. It is computed as

! In statistics there is a difference between the terms ‘ estimator’ and ‘estimate’ . The term ‘estimator’ refersto
the procedure to be followed to estimate a certain population quantity. The ‘estimate’ isthe numerical outcome
of this procedure in a particular case. So we say that the sample average is an estimator of the population mean.
If in a particular sample the average is 25, we say that the estimate of the population mean is 25.
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0x0.001+1%0.019 +--- +5 x0.209 =3.657

But in the framework of IRT, we are not interested in the true score, but in the estimate of John’s theta
value. As we have seen above, a score on the test results in a certain estimate of theta: if John upon a
single test administration would happen to obtain a score of 3, then the estimate of histhetawill be
0.406. For a score of zero or five, thereis no estimate, but wefilled in an arbitrary number of -5 and
+5 respectively as theta estimates. Now the two columns of Table G.4, labelled P(score) and ‘ML-
estimate’ constitute the distribution of the ML-estimated thetd' s: we see, for example, that John's
estimated theta will be +0.409 with a probability of 0.283. So we can compute the average ML -theta
estimate, or, what amounts to the same thing but is more common to say, his expected theta-estimate.
This expected value equals

(-5) x0.001+(-1.389) x0.019 +--- +5 x0.209 =1.62,

which isquitefar from thereal thetayalue of 1. The difference between the expected estimate and
the true value of thetais called the bias™ In this example, the biasis rather serious. Later on we will
seein amore redistic example, that, in general, the bias of the ML-estimator remains serious.

In 1989, Th. Warm developed an aternative estimator, which, for reasonably long tests, is as accurate
as the ML-estimator, but which isless biased. Commonly, this estimator is referred to as the Warm-
estimator or as the weighted maximum likelihood estimator™. It has moreover the attractive property
that it isdefined for zero and perfect scores as well. The Warm estimates for the small example are
displayed in the rightmost column of Table G.4. The expected value of the Warm-estimatesis 0.96,
which, compared to the true value of 1, resultsin a small negative bias.

We now consider a more realistic example with a 20-item test, complying with the Rasch model. The
item parameters range from —1.05 through 1.7 with an average value of +0.5. In Figure G.14 the bias
for the ML-estimator and the Warm-estimator are displayed. We comment on thisfigure:

1. Thebias has been computed for 101 values of theta, put at equal distancesfrom-3to +3. The
symbols for the same estimator form a reasonably smooth graph of afunction, which isthe bias
function: the bias changes with the value of theta.

2. Thegraph running from the upper |eft, and staying stable at the zero line over a broad range and
then decreasing further (dark blue diamonds) is the bias function for the Warm estimator. It is
clearly seen that the biasis very near zero in the interval ranging from —1.5 to +2.5, and that even
in abroader interval the biasisrather small: at +3 the biasis—0.022.

3. Theinterval where the biasis very small is hot symmetric around zero. We will come back to that
point later on.

4. Thetwo other curves are the bias function for the ML-estimator. Since the ML-estimate does not
exist for zero and perfect scores, we have a problem here. If we want to compute expected values
(i.e., averages), we must have numbers, so that in the case of zero and perfect scores we have to
fill in some number, which should be reasonable in some respect, but will always be arbitrary to
some extent. This arbitrariness will influence the result, and the figure is constructed in such away
that we can see the consequences of this arbitrary decision.

2 The bias found hereis influenced by the arbitrary estimates plugged in for zero and perfect scores. This
problem will be addressed in the sequel.

3 The Warm estimate is defined (in the Rasch model and the two-parameter logistic model) as that value of theta
for which a product of two functions is maximal. One function is the likelihood function, the other is the square
root of the information function. The latter is considered as a weight for the former, hence the name ‘weighted
likelihood'.
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Figure G.14 Bias of theta estimators

The graph running from the lower left-hand corner of the display and ending in the upper right-
hand corner (with red squares) is the bias function using -5 and +5 as estimates for zero and
perfect scores respectively.

Thethird graph (with purple triangles) is the bias function of the ML-estimator, where the Warm-
estimates for the zero and perfect scores have been used. These values are —3.56 and 4.50
respectively. We see that both bias functions coincide a great deal, roughly for theta valuesin the
interval (-1,+2), while they differ outside thisinterval. Thisis caused by the fact that inside this
interval, the probability of obtaining a zero or perfect scoreis so small that the precise value of
their two theta estimates scarcely has any influence. For theta values to the left of the interval, the
probability of a zero score is more substantial, and this probability is multiplied by -5 for the red
curve and by —3.56 for the purple curve. That iswhy they go apart, as theta gets smaller: the
smaller theta, the larger the probability of obtaining a zero score. A similar reason holds for values
to theright of the interval.

The three curves cross at the same point, and at this point they have zero bias. In the example, this
point corresponds to a theta value of about +0.5, and this corresponds with the theta value where
thetest hasits maximal information. For the blue (Warm) and the red (ML, with plugged-in
values of -5 and +5) curvesin Figure G.14, the relation between information and biasis displayed
graphically in Figure G.15. For the ML-estimator, we see that the biasis only zero if the
information is maximal (which is about 4.4 in this example), and that when we move to the left
along the x-axis, the bias increasesin absolute value. For the Warm estimator, the bias remains
very close to zero, even for information values lower than 2.

It appearsin Figure G.15 that the red line (which has the appearance of a bird’s beak) is symmetric
around the horizontal zero line, but it is not completely so. This means that there is a close relation
between bias and information, but one cannot be predicted exactly from the other. The precise
relation is not known and thisis a pity, because it restricts the generality of the conclusions we
will draw from this small study.

Another interesting aspect in relation to the Warm estimator is the following observation: it
appears from Figure G.15 that this estimator shows noticeable bias if the information drops under
avalue of two approximately. It would be interesting to know if thisis also the case with other
tests of a different length, with other item parameters, even with another model (like the two
parameter logistic model with different item discriminations). If this were the case, we would have
aquite valuable result, because from the information function we could then determine the range
of theta values which will yield (approximately) unbiased Warm estimates.
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10. To shed some light on this problem, the bias function for the Warm estimator and the information
function for atest of 40 items were constructed. The item parameters used are the same asin the
20 item test; but they occurred twice as often. The maximal information value in this 40-item test
istherefore exactly the double of the maximum in the 20 item test (its value is about 8.8). In
Figure G.16 the relation between the bias of the Warm estimator and information is displayed.
(The blue diamonds refer to the 40-item test; the red squares to the 20-item test). Although the
value where the bias tends to depart from zero is about 2 in both cases, it is also clear that the
departure from zero holds for larger values in the long test than in the short one. But for practical
purposes, avalue of 2 seemsto be fairly useful for practical applications. (Notice that in Figure
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Figure G.15. Bias and information

G.16 the unit for the y-axis is different from the unit in Figure G.15).
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Figure G.16. Bias of the Warm estimator and information

Now we are ready to summarize the results on the estimation of theta:

1. Two estimators of theta can be used after calibration: the ML-estimator and the Warm
estimator. Both have (approximately) the same standard error.
For both estimators it holds that the theta estimate depends only on the score of the test,
not on the specific response pattern. Thisis true in the Rasch model and in the two
parameter logistic model (2PLM). But it does not hold in the three parameter model.
The ML-estimate does not exist for zero and perfect scores but the Warm estimate does
exist for al scores.

2.

3.
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4. The ML-estimator isbiased. For theta values larger than the point of maximal
information, this biasis positive, meaning that on the average the estimate will be larger
than the true value; for theta values smaller than the point of maximal information the bias
is negative. If one takes these two effects jointly, this means that the M L-estimates will
tend to have alarger variance than the real theta val ues.

5. TheWarm estimator shows only a small (and negligible) biasin alarge interval around
the point of maximal information. Outside thisinterval it showsabiaswhichisinthe
opposite direction from the bias in the ML-estimator: for small values of thetathe biasis
positive, for large values it is negative. The effect of this biasisthat the variance of the
Warm estimates will tend to be smaller than the variance of thereal thetas. This effect is
known as shrinkage.

6. A small study suggests that with the Warm estimator, bias begins to be serious for theta
values where the test information is smaller than 2. This result, however, is provisiond
and should be corroborated by more evidence. It isimportant to notice that this result was
found for the Rasch model. It might be different for the 2PLM.

G.7.3 EAP-estimates

The ML-estimator and the Warm-estimator are based exclusively on the test score, i.e., al the
information that these two estimators use is provided by the test taker, and no other sources of
information are used. There exist, however, also estimation procedures that use other informationin a
systematic way.

Suppose John will take atest. We know that he has followed a course of English for four years, and
from other research, we happen to know that in the population of students who have studied four years
of English, the mean thetavalueis 1.1 and the standard deviation is 0.7. We also happen to know that
the digtribution of thetain this population is approximately normal. Since John also belongs to this
population, we could say that in some sense we have some information on John’s ability. We are fairly
sure, for example, that John's ability will not be larger than 2.5 on the theta scale (because 2.5 istwo
standard deviations above the mean), and if we should make a systematic guess, the population mean
would be agood one. In fact, this guess is the best one we can make in many respects. But formally
speaking, this guessis an estimate based on all the information we have about John before he takes the
test. Thisinformation is called the prior information, and we take as the estimate the mean or
expected value of the distribution of the theta val ues we happen to have information about.

After the test taking, we have collected more information about John, and suppose that he obtained a
score of 18 on a 20-item test, afairly good result. Then we could ask a very nice question: suppose
that we happen to know the theta value of all the members of the population, and suppose further that
we administer the test to everybody. So we have, for al population members, their theta value and a
test score. Now we collect al people having obtained atest score of 18 (the same as John’s), and we
make a histogram of their theta values. What would that histogram look like? Notice that this question
is different from a problem we studied in the section about bias: there we were looking for the
distribution of test scores given the value of theta (see Table G.4 for an example); here we have the
reverse problem: what isthe distribution of theta given the test score. Thisdistribution is called the
posterior or aposteriori distribution (as opposed to the distribution we knew before the collection of
test scores, which is called the prior distribution.)

Since John has obtained a score of 18, it seems wise to base our estimate of John’ s theta on the
posterior distribution rather than on the prior distribution, because we then take into account the extra
information John has delivered. And indeed, thisis exactly what is done: the estimate of John’s theta
value isthe mean or expected value of the posterior distribution. Hence the acronym EAP: Expected A
Posteriori. As an indication of the accuracy, one can take the standard deviation of the posterior
distribution.

Here are some comments on this method:
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In the Rasch model there is a different posterior distribution for each score. Once the score is
given, the posterior distribution of theta does not depend on the specific response pattern. For
example, in afour-item test the posterior distribution given the response pattern (0,0,1,1) isthe
same as that given the response pattern (1,1,0,0), because the two response patterns have the same
score. In the two parameter logistic model there is a different posterior distribution for each value
of the weighted score.

The imaginary situation described above (knowing everybody’ s theta value etc.) only served a
didactic purpose, and cannot be realized. But if the prior distribution is known (e.g. we know that
it isnormal with a given mean and SD), and if the item parameters are known, then the exact form
of the posterior distribution for each possible score can be computed. In Section G.8, it will be
shown how the two distributions in Figure G.17 (see below) can be constructed with the program
EXCEL.

If the prior distribution is normal (asit usually isin most applications), then the posterior
distributions are not normal. For extreme scores the posterior distribution may be skewed. In
Figure G.17 an exampleis given. The left-hand distribution is a normal prior with amean of 1.1
and a SD of 0.7. Thetest consists of 15 items, all having the same difficulty of +1. The right-hand
distribution is the posterior distribution for a score of 14. The right-hand tail is a bit more stretched
than the left. The expected value of this distribution is 2.28 and its standard deviation is 0.47, a
value markedly smaller than the prior standard deviation of 0.7. So in general, the posterior
distribution, as graphed in the figure, reflects precisely what we can learn from such a score: the
whole graph of the posterior is situated quite far to the right of the prior distribution, implying that
people getting a score as high as 14 on thistest in general have a quite high theta value But at the
same time we have still a substantial SD in the posterior, so all we can say about John isthat he
belongs to this posterior population, but we cannot locate him more precisely with the information
we got from him. (One should not draw conclusions from the fact that the posterior distribution’s
graph hasahigher ‘top’ than the prior: both figures are scaled in such away that the total surface
under the graph is equal for both figures.)

-1 0 1 2 3 4
theta

Figure G.17. Prior and posterior distributions

It may seem that the use of the EAP estimator is very attractive, sinceit uses all the available

information one has. But one should be careful with such an approach, especially when decisions
about individual persons are based on their estimated theta-value. The form and the location of the
posterior distribution depend to some extent on the prior distribution, such that the mean of the
posterior can be seen as akind of compromise between the prior information we have (John comes
from a population with a mean theta of 1.1) and the information we have from an individual test
performance (John got a score of 14 out of 15 items). Now suppose the prior information that we had
related only to male students having received four years of instruction in English, but that we also

have prior information for the female population, and suppose further that in the femal e population the

mean is 1.6 with an SD of 0.7. Mary belongs to this popul ation and she happens to obtain also a score
of 14 items correct, the same as John’s. But for Mary the EAP-estimate will be higher than for John,
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because it is a compromise between alarger prior mean and the same test score. Upon computation we
find that Mary's EAP-estimateis 2.51, while John got 2.28 for the very sametest performance. Soin
some way, John is punished for being male, and in situations where decisions are based on atest score,
this may be conceived as unfair.

G.8 Producing graphswith EXCEL

In the present section a step by step instruction will be given how to compute the function values for a
number of interesting functionsin an IRT-framework. It will be seen that the amount of formula
typing and entering valuesis really modest while the result —an illuminating graph- is sometimes
worth a thousand words.

The Section is arranged in four subsections:

1. In Section G.8.1 some general principles of handling a spreadsheet in EXCEL will be explained
by constructing, step by step, the formulae and procedures to plot a number of item response
curves

2. In Section G.8.2 the information function of atest will be built;

3. In Section G.8.3 agraphica method for the ML and the Warm-estimator will be devel oped

4. In Section G.8.4 posterior distributions of the theta values will be constructed.

Graphs G.14, G.15 and G.16 related to the previous section (on bias) are also produced with EXCEL,
but the computation of the valuesis quite complicated, and has to be done with specia software.

The whole section should be read and studied cumulatively: in later sections concepts and techniques
explained in earlier sections will be used without further exposition. At the same time the results will
be a bit more general than in sections G5 through G7, because we will use the two parameter logistic
model instead of the Rasch model.

The section is not a beginner’s introduction to EXCEL. If the concepts and techniques which are
introduced here are not understood, it may be wise to consult an introductory tutorial in EXCEL.
Sometimes, built-in functions from EXCEL will be used (like SUM). The name or acronym for these
functions stems from an English version of EXCEL. If the language of the program is not English,
these names may be different. Some functions, however, are so universally used, that they only have a
single name across languages. An example is the function EXP.

G.8.1. General principles of EXCEL

When EXCEL is opened from scratch, a sheet, containing cellsis displayed on the screen. For our
purposes, it is enough to work on a single sheet. The cells of the sheet (displayed as rectangles) are
referred to by an addr ess, which consists of acolumn letter (or pair of |etters, to be understood as a
single symbol), and arow number. These letters and numbers are displayed automatically by EXCEL.
(See Figure G.18).

When we do computations for IRT we will need theta values and the values of the parameters. In what
follows, the theta values will be stored in column A, starting at row 3, the discrimination parameters
will be stored in row 1, and the difficulty parametersin row 2, both starting at column B.

In IRT, thetais a continuous variable which can assume any number. But one cannot type al numbers,
so we will have to make a selection. Let us assume that we are only interested in theta valuesin the
interval (-3,+3), and in thisinterval we will only use about 100 different theta values at equal distances
from their neighbours. Since 3 — (-3) = 6, each value from the second on will be 6/100 = 0.06 units
larger than its predecessor. The nice thing about EXCEL isthat we only have to type two different
numbers, and the other numbers can be generated by a simple technique of selecting and dragging.
The whole process is exemplified in Figure G.18
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Figure G.18. Cresating an equidistant series

In the left hand panel, the situation is depicted after having typed two values. The two values are
selected jointly, and the cursor is placed at the lower right-hand corner of the black rectangle (at the
place of the small black square). Put the cursor in such away that a black +-sign appears, not a hollow
one. Drag this +-sign downwards holding the | eft-hand button of the mouse down (see middle panel),
and upon releasing the mouse button the equidistant values are filled in the black rectangle (whichis
selected as awhole; see right-hand panel). Clicking in any cell of the spreadsheet will undo the
selection. If the mouseis dragged until row 103, we will have 101 equidistant theta values in the range
(-3,+3).

It is good practice to distinguish between values that are typed (or dragged asin the example) and
values which are the result of aformula application. This can be done by very simple lay-out
functions. In the example (left panel) the two numbers are centered in their cells and made bold. This
lay-out is automatically inherited by the cells defined by dragging. Dragging can also be applied
starting from a selection of asingle cdll. In that case, the value of the cell isrepeated in al cells
attained.

In the left-hand panel of Figure G.19 the discrimination parameters for four items (row 1) and the
difficulty parameters (row 2) arefilled in, and the cursor is placed in cell B3, ready to accept avalue
or aformula. Notice that in top of the spreadsheet, the active cell isidentified (B3) and that to the right
of this, there is an empty box, preceded by the ‘="-sign. To type a formula one can just type with the
cursor in cell B3, or one can place the cursor in the formula box. To edit an existing formula, however,
one must place the cursor in the formula box.

) = = B3 =] =] sEXPA3- B2V +ERP [AS-ED))
ooz RS edc
A B [ ) E A, B | L D E

1 1 1 1 1 1 1 1 1 1
2 1 0.9 0.8 1.1 2 K 09 0.8 1.1
3| 3 1 A a3 [Cisen]

4| 294 1 4 794

E| 288 5| .2.88

E 242 B 202

7| 276 I| 276

g 2.7 B 27

0| 254 9 2564

10| 258 o| .2.58

11| 252 11| 252

Figure G.19. Specifying aformula
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To specify aformula one can ailmost use literally the mathematical formula as given in textbooks. The

only differenceisthat for the variable (theta) we must specify the cell where the value of theta can be

found and for the value of the parameter we must type in a specific numeric value or refer to a cell

where that value can be found. For cell B3, it is natural to choose the theta valuein cell A3 and the

difficulty parameter from cell B2. So if we want to use formula (G.3) from section G.5 we could type:
=exp(a3-b2)/(1+exp(a3-b2))

and after typing the ‘enter’ key, the formulais evaluated, the cursor makes another cell active, but if
we come back to cell B3 (by clicking on it), we see the spreadsheet as displayed in the right-hand
panel of Figure G.19. Notice that:
Typing aformula must begin with the ‘="-sign. If ‘=" is omitted, the formulaitself will be
displayed in the cell.
» Theuse of uppercase or lowercase symbolsisarbitrary. EXCEL turns all used |etters to uppercase.
* Thefunction ‘exp’ isabuilt-in functionin EXCEL.
e Addition and subtraction are symbolized by ‘+' and ‘- respectively; multiplication and division by
“*" and ‘/". The multiplication must be mentioned explicitly: for example, 3* A2 (multiply the
valuein cell A2 by 3). Typing ‘3A2" isnot understood by EXCEL and will lead to an error.

Absolute and relative addr esses

A great advantage of EXCEL isthat not only values can be copied from one cell to another but
formulae as well. To understand properly what happens, we need to know what an addressis. Suppose
we make cell B3 active, i.e., we sdlect it, and we type the formula

=2*a3
then the formula does not mean to multiply the number 2 by the number a3, which is not possible,
since a3 is not anumber. What is meant is to perform the multiplication of the number 2 with the
number that can be found in cell *a3'. The cell identification is called the address.

But addresses can be read in two different ways: absolutely and relatively. Since the active cell is B3,
the address A3 can beread as

1. the preceding column, same row (relative to the current position B3)

2. theaddressin column A, row 3, whatever the current position: this is absolute addressing.
If we use the relative address A5 while being in cell B3, then A5 isto be understood asthe cell in the
preceding column, two rows below the current one.

EXCEL dlowsfor both modes, relative and absolute, for the row and column indication separately,
leading to four modes of addressing. Absolute addressing needs the ‘' $ -sign; relative addressing is the
default (no specia sign involved). Now, still being in cell B3, we can write the above formulain four
different ways:

1. row and column relative to the current position: =2* a3

2. row relative and column absolute: =2* $a3

3. row absolute and column relative: =2* a$3

4. row and column absolute: =2* $a$3

For each way of writing the formulawe will get the same result. But things will change if we copy this
formulato the clipboard, and then paste it in some other cell, C5, say. For the four cases listed above,
we will find in the formulabox the following formulae when C5 is made active:

1. =2*B5 (samerow, preceding column);

2. =2*3$A5 (samerow, but column A, absolutely);

3. =2*B$3 (third row, absolutely, preceding column);

4. =2*$A$3 (third row and column A, both absolutely).

If we want the probability for a correct response to four items and for 101 different values of theta, it

would be silly to type the formula 404 times. Using a clever mixture of relative and absolute
addressing we only need to type the formula once. Hereit isfor cell B3 (and we generalize
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immediately to the two parameter logistic model; compare to the mathematical formula (G.4) in
Section G.5):

—exp(b$1* ($a3-b$2))/(1+exp(b$1* ($a3-b$2)))

Here are some comments:

The reference to the discrimination parameter is b$1: the column address is relative (same
column), because we need the discrimination parameter of the current item. If the formulais
copied to column C, we will need the discrimination parameter of the next item; hence the column
addressisrelative. But the row addressis absolute: the discrimination parameter isin the first row,
whichever row we are in. Relative addressing would mean ‘two rows above the current one’. A
similar reasoning appliesto the difficulty parameter.

The reference to the theta value is $a3. The column addressis always column A, not just the
preceding column. The row address, however, is relative: we want the current theta value. If the
formulais copied to cell B4, we want to use the thetavalue in A4, not the onein A3.

To copy the formulato all 404 cells (101 theta values and four items), we apply the same
technique asfor creating a series of values:

o typetheformulain cell B3, make cell B3 active, and put the cursor at the right-hand lower
corner such that the black ‘+' appears.

o Dragtheblack ‘+ horizontally to cell E3. Upon releasing the mouse button, the formulais
copiedin cellsB3, C3, D3 and E3, and these four cells are selected, i.e., enclosed in a
black rectangle.

0 Put the cursor at the right-hand lower corner of the rectangle such that the black ‘+
appears, and drag is downwards to cell E103. Upon releasing the mouse button, the
formulais copied to all 404 cells, and the computations are done.

In Figure G.20 the situation is depicted after this copying, while cell D5 is the active cell. Notice the
formulain the formula box.

D5 - =| =EXP(D$1*(5A5-D$2))(1 +EXP(D$1*(5A5-D52)))
A | B | C D E [ FE [ &

1 1 1 1 1

2 1 0.9 0.8 1.1

3 3 0.119203) 0109097 0.021881 ) 0.016302
4 2.94 0125648 0118067 0.023203 0.017253
5 2.68 0.132389 D.121319| D.DEdEDE! 0.018343
5 2.82 0139434 0127862 0.026084 ) 0.019455
o 2.76 0146759 0.134703 0.027652 | 0.020R33
] 2.0 0154465 0141851 0.029312 0.021531
9 2.64 0162465 0149313 0.031065 0.023203
10 2.58 0170785 0157095 0.032926 0.024602
11 2.52 0179462 01652050 0.034891 ) 0.026034

Figure G.20. Copying formulae

The power of a spreadsheet

Once we have the probabilities of a correct answer for afew items, we can easily extend these
formulae to new items. If we want afifth item (in column F, say), we simply copy one of the other
columnsinto column F, and the formulae of al the cellsin this new column are automatically adapted.

If one wants other item parameters for this new item, all one hasto do is to change the values for these
parametersin cells F1 and F2. As soon as achange is made in some cell, say F1 (and this cell isleft by
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making another cell active), all formulae where reference is made to F1 are computed again and the
result is displayed. If agraphical display is constructed, using the values in column F, the graph will
be automatically adapted as well.

Drawing a graph

Here is some information on how to draw a graph quickly in EXCEL. We will draw a graph of the
item response functions in columns B to E of the preceding example. In drawing a graph we need to
provide the coordinates for a number of points. These points are then plotted in a plane and
(optionally) connected by aline. It is also possible to plot only the connecting lines, without a special
symbol for the points themselves. We will choose that |atter option.

e Choose the button for the ‘ Chart Wizard’ from the toolbar. It looks like this:

m

(If itisnot visible, activate the standard toolbar: in the menu View, choose ‘ Toolbars', and click
on ‘Standard’)

* Thefirst step of the Wizard is displayed asin Figure G.21. Make the selection * XY (Scatter)’ from
thelist of Chart types and select the sub-type as indicated in the figure. Then, press the ‘ next’
button. (It isaso possibleto work with ‘Line" as chart type, but in our experience, it is easier to
work with the scatter chart.)
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Figure G.21. Chart Wizard, step 1
* Inthe second step of the wizard, choose the tab * Series’ (see Figure G.22). It may happen that

some graphs are defined already (it will not happen if the wizard is started while an empty cell is
selected). To start from scratch, existing graphs can be removed with the * Remove' button.
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Figure G.22 Chart wizard, step 2

To add a graph, usethe ‘Add’ button. Upon pressing ‘Add’ the three boxes at the right become
empty, and can befilled. The *Name' box can be filled with the name of the graph (or with a
reference of the cell(s) where the name isto be found). This name will appear in the legend
accompanying the resulting graph. The other two boxes are used to specify the cells where the x-
and y-coordinates are to be found. One can type these references as shown in the example in
Figure G.22, but one can aso use the button (red, blue and white at the right end of the box). This
button is called the * Collapse Didlog’ button, and upon pressing it, the following happens:

0 Thediaog asdisplayed in Figure G.22 disappears (provisionaly);

0 Thevaue box done appears on the screen;

0 Thevaues needed can be selected using the mouse, from the active sheet but also from

another sheet. (The selected values are surrounded by a dashed rectangle.)
0 Upon pressing the * Collapse Dialog’ button in the box again, the dialog reappears and the
selected cells arefilled in the correct format in the value box.

Choosing ‘Next’ brings the user to the third step where a number of choices can be made
concerning the lay-out. These choices are self-evident. The last step (choosing ‘Next’ again)
leaves the choice for the location of the graph: in the active sheet or on another sheet. Pressing the
‘Finish’ button brings one back to the EXCEL sheet with the constructed figure displayed on it.
The ‘Finish’ button may be pressed after each step. In the example to be discussed next, the
‘Finish’ button was used after the second step.
A figure thus constructed may be edited in all respects at al times. A figure consists of a number
of objects which may be edited separately. These objects are: the chart area (indicated by a
selection of the outer frame of the figure), the plot area (the rectangular area formed by x- and y-
axes), the legend, the x-axis, the y-axis, each graph and each title. To edit an object in the figure,
select it, click the right mouse button, after which amenu appears, and make a choice from that
menu. In the left-hand pane of Figure G.23 the figure with the four item response curvesis
displayed using the default options for lay-out from EXCEL. The right-hand panel is the lay-out
that is used mostly in the figures of the present section. We comment on how to proceed to get this
lay-out.

0 Removethelegend: select the legend, click the right mouse button, choose ‘ Clear’.
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o0 Removethe gray background: select the plot area, click the right mouse button, choose
‘Clear’. (To create another background: choose the option ‘ Format Plot Area’, and choose
whatever you like.)

0 Addtitles: select the chart area, click the right mouse button, choose the option ‘ Chart
Options...’, and go to the tab ‘Titles'. Titles are written in a default font with a default
size. To change these, select the title in the figure (and not while being in atitle box of a
dialog), click the right mouse button and select the option * Format Title'. After adding or
editing titles, it may happen that the plot area has become rather flat. To change its area,
select it, put the cursor on one of the black squares (it changes into asingle or double
arrow) and drag the plot area to display the form and area you wish. (Notice that the text
of atitle cannot be edited after selecting the title itself; one should select the chart area,
and choose the ‘ Chart Options...".)

0 One of the curves hasto be removed: select it, click the right mouse button, choose
‘Clear’.

o Changethe color of a curve: select it, click the right mouse button, choose ‘ Format Data
Series’ and adialog is opened. Select the tab ‘ Patterns' and change the * Color’ of the
‘Line.

0 Thex-axis should berestricted to theinterval (-3,+3), and, moreover, the y-axis should
crossthe x-axis at —3 and not at zero asin the left-hand pand of Figure G.23. Select the
x-axis, click the right mouse button, choose ‘ Format Axis...". A dialog appears; choose the
tab ‘ Scale’ and specify the boxes ‘Minimum:’ (-3), ‘Maximum:’ (3) and ‘Value (Y) axis
crosses at:’ (-3). Notice that once these options are used, they remain in effect until
changed actively.

0 They-axisshould be restricted to the interval (0,1), we want numbers and gridlines
displayed at a distance of 0.25, and not of 0.2 asin the default lay-out and, finally, all
displayed numbers should have the same number (2) of decimals. To restrict the maximum
value, proceed as with the x-axis. To control the distance between gridlines and the
displayed axis values, specify 0.25 in the box ‘Mgjor Unit:” of the same dialog. To control
the number of decimals, select the tab ‘Number’ in the dialog, select ‘Number’ in the box
‘Category:’, and then select the wanted number of decimalsin the box ‘ Decimal places:’.

0 Toaddanew graph tothefigure, select the plot area or the chart area, click the right
mouse button and choose ‘ Source Data...”, whereupon the dialog as displayed in Figure
G.22 will appear. A new graph can be added.
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Figure G.23. Changing lay-out
G.8.2 Computing theinformation function

The formulafor the information function (given as formula (g.6)) is repeated here for convenience:
1.(6) =38, (OIL- f,(6)]

The formulaisasum across items and each term of the sum consists of aproduct of three quantities:
the square of the discrimination parameter, the value of the item response function for some value of
theta and one minus the value of the item response function for the same value of theta. So, for a
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specified value of theta, the information function is asum of products, and we can compute it directly
in EXCEL by the very powerful built-in function SUMPRODUCT. Wefirst give the formula and then
comment on it. Refer to Figure G.20, and assume that cell F3 is active. The formulato be typedis:

=SUMPRODUCT (B$1:E$1"2,B3:E3,1-B3:E3)

*  Thefunction SUMPRODUCT has three arguments, placed between parentheses and separated by
commas (in some languages the semi-colon has to be used to separate arguments). The second
argument, for example, iswritten as B3:E3, and denotes the array of cells starting at B3 and
ending at E3. Notice that the addresses are relative to the current active cell F3: the row indication
‘3’ should beread as ‘ current row’, and the column indication ‘E’, as the preceding column. (The
function SUMPRODUCT can have as many as 30 arguments.)

e Thethird argument is‘1-B3:E3'. It means that the values of the array B3:E3 must be subtracted
from one, cell by cell, before they can be used. So we refer to an array which was not defined
explicitly in the spreadsheet, but which will be created implicitly by the function SUMPRODUCT.

* Thefirst argument is B$1:E$1"2. The caret (‘') denotes exponentiation, and since the exponent is
2, we want squares of all the valuesin the array B$1:E$1. Notice that we use absol ute addressing
for the rows, because the discrimination parameters are listed in row 1 and not in general two rows
above the current row (true for cell F3, but not for F4).

* Theresult in F3 isthe value of the information for the theta value stored in cell A3. The formula
can be copied by dragging it downwards until cell F103, and the column F can be used to plot the
information function. In Figure G.24 (left panel), part of the spreadsheet is displayed after these
computations, but notice that the discrimination parameter of item two (cell C1) has been changed
from one to two. In the formula box, the array indication B$1:E$1 is put between parentheses; this
is alowed but not compulsory. In the right-hand panel, the information function is displayed
graphically to show that it is not always nicely symmetric.
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Figure G.24. Information function

If the function SUMPRODUCT happensto have another name in another language, it can be found as
follows: click on the button f, in the standard toolbar of EXCEL, and search in the function category
‘Math & Trig' (mathematics and trigonometry). Placing the cursor at any of the displayed function
names will give explanations on the chosen function. Doubl e clicking on the selected function name
will start awizard which can be helpful in writing the correct format, although some extra editing may
be necessary. Make sure to select the correct cell (where the formula has to apply) befor e starting the
wizard.

G.8.3ML- and Warm-estimates
Usually software for IRT produces ML- or Warm-estimates for all possible test scores. Nonetheless, it
may be instructive to produce some graphs of the likelihood function (for ML) or the weighted

likelihood (Warm). Once the item response function has been evaluated (in columns from B through
E) and the information function (column F) is computed, the required computations for the likelihood
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and the weighted likelihood are simple. But we should keep in mind that the likelihood function (in
general) is different for each response pattern: even if the score of two response patternsis the same,
the likelihood function in general will be different. (See Figure G.11 for an example.)

We will use column G for the likelihood function of the response pattern (1,1,0,0), and column H for
the weighted likelihood function. The formulato be typed in cell G3isthen

=B3*C3*(1-D3)* (1-E3)

and this formula can be copied in al relevant cells by dragging. Once thisis done, the formulafor the
weighted likelihood is even simpler: it is the product of the likelihood and the square root of the
information function. So, making the cell H3 active, we only type

=G3*SQRT(F3)

Plotting both functions in the same graph usually will not result in an elegant picture, because the units
of both functions may be quite different. Even plotting two likelihood functions in the same graph may
not be satisfying because of the (sometimes grossly) different scales. But since the (weighted)
likelihood function will be mostly needed to find the theta value where it reaches its maximum, one
can rescale one or both of the functions such that they can nicely be displayed together in the same
graph. This can be done asfollows:

» After having applied the two formulae above, we look up columns G and H to find the largest
value. In column G the largest value happensto be 0.3247, and in column H 0.3506. We can also
use the function MAX to find the maximum. Choose some empty cell and enter the formula
=MAX(G3:G103)

*  Next we recompute columns G and H, but we divide the former function values by their maximum
values. Soin cell G3 we specify the formula

=B3*C3*(1-D3)*(1-E3)/0.3247
and in cell H3 we specify
=G3* SQRT(F3)*0.3247/0.3506
(Noticethat in the latter formulawe have to multiply first by 0.3247 because we use a new G3
value which isthe old one divided by 0.3247.)

*  Thenew formulae are copied to the whole of columns G and H.

* Now the maximal value in both columns will be equal to one. Notice that in columns G and H we
now do not find any longer the (weighted) likelihood, but the (weighted) likelihood multiplied by
some constant (different for the two columns). But the important thing to understand is that by
multiplying the function values by a constant, the for m of the graph will not change, and in
particular, the theta value at which the functions reach their maximum will not change. The
standard way of expressing thisisto say that the valuesin column G are now proportional to the
likelihood. In Figure G.25 both proportional functions are displayed, and we see that the
maximum likelihood estimateis larger than the Warm estimate. The y-axis has been deleted
because the values to be displayed have a different meaning for the two curves.

Likelihood and weighted likelihood for pattern (1,1,0,0)

—ML
—Warm

2 -1 0 1 2
theta

Figure G.25 Likelihood and weighted likelihood functions (proportional)
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G.8.4 Posterior distributions

Before we start with technical explanations, something has to be said about the graph of a distribution
of a continuous variable. As an example we will take the prior distribution of the example used in
Section G.7: itisanormal distribution with amean of 1.1 and a standard deviation of 0.7. The graph
of the distribution we are acquainted with is a bell shaped curve. The x-axis represents the values the
variable can assume (in our case: theta). In the normal distribution these values run from minus
infinity to plusinfinity, but in drawing a graph we usually restrict the range of values to about three
standard deviations at either side of the mean. To plot the curve, we need to know also the y-
coordinate at each point (the y-value), and here there arise two questions: how does one compute these
y-values and what do they mean? To compute the y-values for a given value of theta, we need arule,
the function rule of the normal distribution. Hereitis:

1 e
y(9)—0_ Tom eXp{ —} (G.10)

20°
y(6) isthe value of the function for a given value of theta.

* O isthevalue of standard deviation (in our case 0.7) and W isthe value of the mean (in our case

1.1). The symbol 77 represents the number 3.14159..., well known from trigonometry.

»  We seethat in the right-hand side of (G.10) the symbol theta also appears. If we substitute a
number for this symbol, we can compute the value of the y-coordinate at that number, and for
different numbers used we will get different results (in general). So, formula (G.10) is afunction
rule. If we compute it for a number of theta values and make a plot, we will get that famous bell
shaped curve. But we can make the computations a bit simpler.

»  Theright-hand side of formula (G.10) contains two factors (indicated explicitly by the
multiplication sign); the first factor does not contain theta, the second one does. So one might ask
why thisfirst factor isthere. The reason isthat in a probability distribution the total area under the
curve must be equal to one, and we need the first factor to make sure that this will be the case.
Therefore thisfirst factor is called a normalizing constant. (It is constant because it does not
depend on the variable theta.)

*  But what do we mean by an area of one? one what? If we make a plot of the function on paper, we
could measure the area under the curve and find that the areais 1.3 square inches. But if we make
areduced photo copy of the plot, we might find that the area on the copy is how 0.8 square inch,
but nobody will think that the figures on the original and the copied plot represent something
different. So for plotting purposes we do not need this normalizing constant, and we may replace
the rule (G.10) by asimpler rule:

A1
257 (9.11)
and thisis all we need to compute in the spreadsheet. Continuing the example of the preceding
section, we will define aformulain cell 13 and then copy it to the whole column | (by dragging).
Theformulais

_ 2
y(6) is proportiona to exp{—u}

—exp((a3-1.1)"2/(-2*0.7"2))

where the numerical values of 1.1 for the mean and 0.7 for the standard deviation are used.

* InFigure G.26 the distribution is plotted in three different ways. In al three panelstheinterval
used for the theta values and the length of the x-axes are exactly the same; yet, the three plots look
quite different. The reason is that the y-axisis scaled differently in the three cases. Thereis no
mathematical reason why one should prefer any one of the three graphs. Usually, the middle one
will be preferred, but thisis only for aesthetic reasons (usualy, the ratio of the length of the y-axis
to the length of the x-axisis about 3:4). It is useful to realize this when constructing or judging
plots. The plot in the left-hand panel might suggest a distribution with alarge standard deviation
and the onein the right-hand panel asmall standard deviation, but all three plots represent the
same distribution; only the lay-out of the pictures differ.
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Figure G.26. Three times the same normal distribution

e What isthemeaning of y(6), they-value of the function rule (G.10)? It is certainly not a

frequency or a proportion or a probahility. We know that in a normal distribution most values are
concentrated around the mean (where the y-value islargest), and less so further away from the
mean (where the y-values are small). Another term for concentration is density, and the name of
the y-valuesis called the probability density (or sometimes density for short) and the function
rule (G.10 for the normal distribution) is called the probability density function. In a graph of the
normal distribution, probabilities are represented by areas. The whole area equals one, and the area
under the curve for theta values running from minus infinity up to the mean equal s one half,
meaning that there is a probability of 0.5 to observe a value smaller than the mean upon arandom
draw from the distribution.

Now we are ready to discuss the posterior distribution. It is also a distribution of the values of theta,
which is acontinuous variable, and just as with the normal distribution (the prior), we will need arule
(aprobability density function) for the posterior. In applications of IRT, this posterior distribution is
generally not the normal distribution, and we should realize that for each response pattern thereis
another posterior distribution. There exists a very famous rule which is the result of a celebrated
theorem by Thomas Bayes (after whom an important branch in statistics is named: Bayesian Statistics;
the theorem was proved in 1763):

The posterior density is proportional to the product of
theprior density and thelikelihood.

The application to our spreadsheet example is now very ssmple: in column G the likelihood for the
response pattern (1,1,0,0) was computed (and later on multiplied with a constant: see Section G.8.3)
and in column | the prior densities are stored, but also multiplied by a constant because we left out the
normalizing constant. If we make cell J3 the active cell, we can apply the formula:

=g3*i3
and then drag it down to cell J103. Notice that in column Jwe did not compute densities, but values
which are proportional to the wanted density. To have the real densities we should multiply the values
in column Jwith some number, but this number is generally very difficult to determine exactly. If we
plot asingle posterior distribution, this number is not important, because EXCEL will scale x- and y-
axes to produce arather good looking graph.

A problem, however, may crop up if we want to make a graph of the prior and the posterior
distributions in the same picture. The problem has to do with the concept of proportionality. We
explain it with an example. Suppose we have computed prior and posterior densities correctly (using
the correct normalizing constant), but then we multiply the column of the prior densities with 1,000
and divide the posterior densities by 1,000. The result will be that the transformed priors will be
approximately 1,000,000 times as large as the transformed posterior densities, and if we plot both
distributions within the same frame of axes, the posterior distribution will not be visible (unless the
length of the y-axisis about ten kilometers). More generally, this means that we must make the y-
values of both distributions comparable.
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Thetotal area under the graph of adistribution equals one (undefined unit of ared). But this also means
that if we plot two distributions, their areas should be equal to each other. Thereisasimple way to
compare plotted areas of a distribution: we could plot the distribution a so as a histogram, a collection
of rectangles (101 in the example), al having the same base, but heights equal to (or proportional to)
the values listed in the relevant column of the spreadsheet. The total area of these rectangles will be
very close to the total area under the graph of the function. To find thistotal area under the histogram,
all we haveto do isto take the sum of the density values we use.

A convenient way to compute and store the sum of the valuesin a column isto use the built-in
function SUM in the cell just under the last value computed. For the prior densities this will be cell
1104 and for the posterior densities cell J104. Making cell 1104 active and typing the formula

=SUM(I3:1103)
will display the sum of the prior densities. In the example used up to now, this gives a value of 29.16.
The sum of the posterior densitiesis 16.74 (computed with the SUM function in cell J104). If we plot
prior and posterior with the values as stored, the area under the graph of the prior will be 29.16/16.74
= 1.74 times as large as the area under the graph of the posterior. To make them equal, we should
multiply the posterior densities by afactor 1.74. So we can recompute column J, by defining in cell J3
the formula

=g3*i3*1.74

and dragging until cell J103. The sum will be automatically adapted in cell J104, and should be equal
(up to rounding error) to the number displayed in cell 1103. It iswith this technique that Figure G.17
has been constructed. Notice that the y-axis has been deleted, because it has a different meaning for
the two curves.
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