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Section C

Classical Test Theory

N.D. Verhelst
National Institute for Educational M easurement (Cito)
Arnhem, The Netherlands

In this section an overview is given of the main concepts and theoretical results of Classical Test The-
ory (CTT). Thetext has been written to be as accessible as possible for the non-technical reader. The
first two sections (Basic Concepts and Procedures) do not contain any formulae. They are meant to be
read as awhole, since conceptsintroduced at the start are used in later parts. AsCTT isadtatistical
theory, it is not possible to present and discussit in great depth without having recourse to the exact
and compact way of expression provided by mathematical formulae. Where it isfelt that some deeper
understanding of the theory might be wished, reference is made to a more technical section. These
technical sections are stand-alone sections, and are added to the main text in the order they are referred
to.

Classica Test Theory has been used for more than fifty years as a guide for test constructors to under-
stand the statistical properties of test scores, and to use these properties to optimise the test under con-
struction in anumber of ways. The main purpose of this appendix is to review the main issues of Clas-
sical Test Theory, and to emphasise what can be expected from Classical Test Theory and what not.
We will first present some basic concepts and then go on to procedures which are used in the frame-
work of Classical Test Theory.

C.1. Basic Concepts

Items. In many cases atest is composed of a number of elementary parts, for example, twenty ques-
tions. A generic name for such apart is: ‘item’. Thereis, however, no stringent rule of identifying
items with questions. Suppose areading test consists of five text passages, and four questions are to be
answered about each passage. One might conceive the twenty questions as twenty items, but one
might also consider the four questions associated with each text asa single item. In the latter case, one
sometimes refers to those composite items as super items, testlets or item bundles.

Observed score. When atest is administered, the result is summarized by anumber (for example,
the number of correct item responses). This number is called the (observed) test score. Usually the test
score is the sum of the item scores. In al analysesto be carried out in CTT, the item scores are usu-
ally the basic quantities that enter such analyses. But it should be kept in mind that these scores are not
given as such; they come about through a decision by the test constructor, and CTT does not provide
any rules for taking such adecision. It is customary to grant one point for the ‘ correct answer’ in a
multiple choice item, and zero points for any other choice. In some cases, however, it might be more
informative to grant 2 points for a particular choice, 1 point for another (not optimal) choice and zero
points for the remaining choices. The actual choice the test taker makes is the basic observation; the
granting of pointsis adecision to be taken a priori, Sometimes on intuitive grounds, sometimes on the
basis of extended qualitative studies and quantitative analyses of the set of observations. Thereforeit is
wise to keep as detailed records of the observations as possible: for multiple choice questions, the op-
tion actually chosen; for open ended questions, it is advisable to develop a quite detailed categorizing
system, and to keep records (in a data base) of as much detail as possible. To the data stored in this
manner, different scoring rules may then applied, yielding in each case a file with (numerical) item
scores which may then be submitted to quantitative analyses.

True score. The basic assumption of CTT isthat in a second administration of the same test to the

same person under similar circumstances as the first time, we will probably not observe the same score
asthefirst time. This reasoning can be generalized to an arbitrary number of similar test admini-
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strations, giving riseto theidea of adistribution of (possible) test scores. This distribution is associ-
ated with asingle person, and hence could be characterized as his or her ‘private’ distribution. In CTT
the average of this private distribution is called the person’ s true score. True score is a statistical con-
cept, and has nothing to do with conceptions like ‘ideal score’ or ‘the score aperson really deserves'.
The observed score actually obtained is conceived as a sample (of size 1) from the ‘private’ distribu-
tion. True scores are not observed. The true score of a person is symbolized (in this appendix) with the
Greek letter tau (1). Noticethat it is a number.

Measurement error. In CTT the measurement error is defined as the difference between the observed
score and the true score. If the observed scoreis greater than the true score, we say that the measure-
ment error is positive; if it issmaller, the measurement error is negative. Since the true score of a per-
son is not known, the measurement error (in a particular case) is not known either. It is possible, how-
ever, to say something more concrete of measurement errorsin apopulation. The symbol used for the
measurement error is E.

Variability: standard deviation and variance. Phenomena showing no variability are not very in-
formative. If everybody (from a certain population) gets the maximum score on atest, all one can say
isthat the test is apparently too easy for this population. Things are becoming interesting if they show
variability, astest scores in a calibration sample usually do. In statistics one needs a measur e of vari-
ability. A well known measure is the standard deviation. The variance is the square of the standard
deviation. Although the standard deviation is usually easier to interpret, the variance is a more useful
concept in statistics (e.g., in such techniques as analysis of variance.)

Sour ces of variance. Suppose John's observed scoreis 18 and Mary’sis 20. One could ask why these
observed scores differ. CTT distinguishes two sources of variability: the scores may differ because
John’s and Mary’ s true scores differ or because the two measurement errors differ; or both. These two
sources cannot be disentangled at the individual level, i.e., we cannot know the answer in the concrete
case of John and Mary; but they can be distinguished at the level of the population. In the population
the true score is not a number, but a variable (which can assume different values for different persons).
To indicate the true score as a variable we use the symbol T. The important result is that (in the popu-
lation) the variance of the observed scoresis the sum of the variance of the true scores and the vari-
ance of the measurement errors. (Notice that this decomposition rule does not hold for standard devia-
tions.) Shorthand names are sometimes used: observed variance for the variance of observed scores,
true and error variance for variance of true scores and measurement errors, respectively.

Reliability of test scores. Thereliability of test scoresis defined as the ratio of the true variance to the
observed variance. Multiplied by 100, it can be interpreted as a percentage: it is the percentage of the
observed variance which is true variance. The minimum value of the reliability is zero, meaning that
all variation in the observed scores is due to measurement error. The maximum value is one, meaning
that thereis no measurement error. A reliability coefficient of 0.8 means that 80% of the observed
score variance is due to variation in the true scores and 20% to measurement error. Reliability isakey
concept in CTT, but from the definition it is not clear how it can be determined. Further down, this
problem will be discussed, together with some examples of the importance of the concept. The expres-
sion ‘reliability of atest’ is often used, but it is not correct; it should be understood as ‘reliability of
test scores'.

C.2 Procedures

P-values.

In the process of constructing test itemsit is important to have arather precise idea of the target popu-
lation. Administration of items that are too easy or too hard is not adequate for several reasons. It may
lead to boredom or frustration, which in turn will almost invariably cause loss of motivation for the

test taker. Moreover, in this case, the item responses will give very little information about the pro-
ficiency level of the test takers. Therefore, it isimportant to have arather precise idea about the degree
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of difficulty of the items; decisions on inclusion or exclusion of items are often based on information
about their degree of difficulty, usually called p-values. (The‘p’ refersto proportion or probability.)
For binary (scored 0/1) items, the p-value of an itemis the proportion of correct responses in the popu-
lation. Usualy, ap-value is considered as a property of an item, which is correct, aslong as one real-
isesthat this property isvalid only with respect to a certain population. A common way of expressing
thisrelativity isto say that p-values are population dependent. This can easily be understood with the
following simple example. Suppose an item is developed for atest to be applied in the fourth year of
English learning. With respect to this population, let us assume that the item is rather easy, and has a
p-value of 0.8. It will easily be understood that such an item may be much harder in the population of
second year students, yielding a p-value of 0.25 or even lower in this population. Thus speaking of the
p-value of anitem has no meaning; implicitly or explicitly there is dways a reference to some popula
tion. This population dependency has immediate implications when one tries to establish the psycho-
metric properties of atest from the sample observations. The sample must be representative for the
population.

Note 1. P-values are values which pertain to itemsin some population, but they are computed on a
sample. Representativeness of the sample does not mean that the value computed will be equa to the
value in the population. If we compute the p-value of an item in two independent samples, we will
usually find two different values. The p-value found in the sample isto be considered as an estimate
of the p-value in the popul ation. The accuracy of the estimate depends mainly on the sample size. De-
tails and examples are given in Section C.3

Note 2. Itemswhere one can get 0, 1 or 2 points, or 0, 1, 2 or 3 points, etc., are called partia credit
items. P-values of partial credit items are defined as the average relative score. See Section C.4 for
details.

Note 3. It iscommon to interpret p-values as measures of difficulty, but notice that the higher the p-
value, the easier the item is. Some authors use 1 — p as the measure of difficulty. Both measures are
acceptable, aslong asit is clearly indicated which oneis used.

Item discrimination

Simply stated, the discriminating power of an item isto extent to which it is possible to separate high

proficiency levels from low levels on the basis of the responses to the item. Or, stated otherwise: what

is the psychometric quality of atest which consists of this particular item? Suppose that a quite diffi-

cult binary item is used as atest. We will say that the item discriminates well if the very best students

have the item correct, and the others not, but since a binary item has only two categories (right or

wrong), if the item separates the very best from the others, it cannot separate the students of medium

proficiency from the weak ones. That is, discrimination isalocal property, and it isfairly difficult to

catch (and describe) the discriminating power of an itemin asingle number. Y et, there exist severa

indices of discrimination which are used within CTT. We list some of them:

» the correlation between item score and test score (item-test correlation);

» the correlation between item score and the score on the test with that item excluded (item-rest cor-
relation);

» inparticular for multiple choice items:. the correlation between test score and each of the distrac-
tors.

Item-test and item-rest correlations should be positive; correlations between the test score and the dis-

tractors should be negative. (See Section C5 for the exact meaning of this notion) Rules of thumb for a

minimum value of item-test or item-rest correlations may be misleading, because the correlation is

strongly influenced by the p-value of the item.

Graphical Item Analysis

The usual output from software for item analysis consists of a number of tables containing p-values,
discrimination indices like item-test and item-rest correlations, and other indices usually interpreted
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also asindices of discrimination. There exists, however, a simple and powerful tool to judge the qual-
ity of theitems. Each item is represented by one or more curves as exemplified in Figure C.1
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Figure C.1. Graphical item analysis

The figures are constructed using the same principle: the total sampleis split into a small number of
homogeneous groups (four in the examples; ‘1’ denotes the groups with the lowest scores, ‘4’ the
group with the highest scores, and ‘2" and ‘3" intermediate groups) on the basis of the test scores. In
each group the proportion of correct responses is computed and plotted against the group number, asis
shown in the left-hand panel of the figure (item 29). One sees immediately that the item isrelatively
difficult: evenin the highest group (4) only about 60% of the test takers gave a correct answer. We
also see that the item-test correlation will be positive: the higher the group number, the higher the pro-
portion of correct responses. In the right-hand panel asimilar figureis drawn for a multiple choice
item with five alternatives (where B isthe correct dternative). Here we see immediately that the item
isnot of avery high quality: the discriminating power islow (the curve for alternative B increases
very slowly); the distractors D and E are almost never chosen (and so prove to be useless as distrac-
tors), and distractor C remains attractive at a constant and quite elevated level (more than 30%), which
may suggest that thisitem is a catch item. In summary, the figure suggests clearly that the item de-
serves revision, and cannot function asa‘model item’ to help train item writers. More examples are
given and discussed in Section C.6.

The figures displayed above are standard output of the computer program TiaPlus. To obtain this pro-
gram, arequest should be sent to Ton.Heuvelmans@Citogroep.nl.

Estimation of Rdiability

From the definition of reliability, it is clearly not possible to compute the reliability coefficient di-
rectly, because of the presence of a quantity which is not observable: the variance of the true scores. In
order to compute the reliability, a new concept has to be introduced, the concept of aparallel test.
Two tests are parallel if the following two conditions hold: the true scores on both tests are equal for
all personsin the population, and the variance of the measurement error is equal in both tests.

An important and reassuring result of CTT isthat the reliability of atest equals the correlation be-
tween the test and a parallel test. Two paralel tests have the same reliability.

There are two problems associated with this finding: (1) how do we know that two tests are parallel,
and (2) in order to compute the correlation, we need test scores on the same sample of test takers on
the two tests, i.e., two test administrations are required. We comment on both problems.

1 Theconstruction of parallel tests
a Two parallel tests have the same average observed score and the same observed variance.
Moreover, their correlation with all other tests, whatever these measure, should be the same.
But this holds in the population; we cannot expect that these equalitieswill aso hold ina
sample. In practice, significance testing can be used, but one should be careful: if the differ-
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ence between two sample averages does not differ significantly from zero, this does not imply

that the population differences do not differ. The risk that areal differencein the populationis

not detected by a significance test is larger when the sample sizeissmall.

b Two methods are commonly used in applications of CTT, parallel form and retesting. In the
retesting method, the same test is applied at two different pointsin time. The main threat to
paralelism is the memory effect. Here we have to distinguish between two cases:

i) Ingeneral memory effects are beneficial to the test performance, yielding a higher test
score on the second administration than on the first one. If memory effects are uniform,
i.e., if theincrease from the first to the second administration (in true score) isthe same
for every person, the two series of test scores are not parallel, but their correlation never-
thelessisthe reliability of the test. If theincreaseis uniform, the two (population) means
may differ, but the variances will not differ.

i) If memory effects are not the same for every person, the retesting will not yield aparallel
form. This may occur when there are ceiling effects: low scores in the first administration
may increase considerably by memory effects, but high scores may probably not increase
by the same amount, because they are aready close to the maximum score of the test. If
thisisthe case, the correlation between the two series of test scoresis not the reiability.

The construction of parallel formsis not easy either. A necessary condition for parallelismis

that the contents of both forms should be comparable, which may be hard to accomplish in

cases where complex items are constructed (e.g., a text passage with four or five associated
questions). There exists arather ssimple method to use psychometric indices to aid in con-

structing parallel forms. This method is discussed in section C.7.

c Sometimes, only one test is available, but for the sake of estimating the reliability it is split
into two halves which are meant to be parallel. Notice that the correlation between the two
halves —if they arereally paralel - isnot the reliability of the test, but of the half tests. To ob-
tain the reliability of the test, the Spearman-Brown formula has to be applied (see below).This
method is known as the split-half method. If the two halves are not parallel, the resulting coef-
ficient underestimates the reliability.

2 Rédiability estimation from a single test administration
a Inprincipleitisimpossibleto determine the reliability of atest from a single test administra-

tion. All that can be reached is a so called lower bound to the reliability; thisis anumber such

that one can be certain that the reliability is not lower than that number. If for a given test this
lower bound is 0.7, all one can be sure of isthat the reliability isat least 0.7. If the lower
bound is high (more than 0.95, for example) thiswill not be a big problem. If it islow, how-
ever, 0.30 say, it does not follow that the reliability is that low.

b Thebest known lower bound is Cronbach’s coefficient alpha. It can be used for any mixture of

binary and partial credit items.

The KR20-coefficient is the same as Cronbach’ s alpha, but it is defined only for binary items.

Cronbach’s aphais sometimes labelled as an index of internal consistency, i.e., anindex that

shows the extent to which all itemsin the test measure the same concept. If the test isreally

one-dimensional, the index will be close to the reliability; if the test is heterogeneous, alpha
can be substantially lower than the reliability.

e Thereexist morelower bounds. In fact there exists a greatest lower bound (GLB). It isat
least aslarge as all possible lower bounds. The computation of the GLB is not easy (there does
not exist aclosed formula), but it is available in published software; the program TiaPlus does
computeit.

f  Lower bounds such as Cronbach’s alpha, the KR20 and the GLB are quantities which apply to
the population. They are estimated from the calibration sample and contain an estimation er-
ror. The estimate of the GLB from small samplestends to be a serious overestimate of the
population GLB. In the program TiaPlus, a correction to this biasis applied if the sample size
is not too small.

o0

The Spearman-Brown formula. Tests are administered to collect information on a person’s profi-
ciency. The information is conveyed through the scores obtained on the items, but we have to admit
that these scores contain errors, some positive, others negative. By summing the item scores, positive
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and negative errors will tend to cancel each other, the more so if the test getslonger. It follows that we

can trust the result of along test generally more than the result of a short test, or, what is the same, the

reliability of along test is higher than that of a short test. The Spearman-Brown formula expresses the

relation between test length and reliability. It can be used in two ways, which we illustrate with an ex-

ample:

1. A test consisting of 25 items has ardiability of 0.7. What will the reliability beif 10 items are
added? (The answer is 0.766; see Section C.8)

2. A test consisting of 25 items has areliability of 0.7. How many items must the test contain to have
ardiability of 0.87 (The answer is 43; see Section C.8.)

The second example shows how the Spearman-Brown formula can be used to plan work on extraitem
writing. It should be noticed that it is more expensive (in terms of the number of items) to raise the
reliability from 0.8 to 0.9 than from 0.7 to 0.8. The increase from 0.7 to 0.8 requires 43 — 25 = 18 extra
items; to reach 0.9, another 54 items are required.

The Spearman-Brown formula must be used very cautiously: it only applies if the added items are of
the same quality asthe items aready present. The standard expression is that the test must be length-
ened homogeneoudly.

The formula can also be used in the reverse sense: if a planned test with a known reliability happens to
be too long to be useful in practice, the formula can be used to compute the reliability of a shortened
version of the test. Taking the example above: if the test with 43 items and areliability of 0.8 is short-
ened (homogeneously) to 25 items, the shorter version will have areliability of 0.7.

Finally, it can be used to compute the reliability in case of the split-half method. If the correlation be-
tween the two test halvesis symbolized asr, the reliability of the full test is 2r/(1+r).

The Standard Error of Measurement. Although we can never know in a particular case what the
measurement error is, we can have a quite precise idea of the magnitude of the measurement error ‘on
the average’. Recall the ‘private’ distributions of the observed scores. If in such a private distribution
of possible observed scores all (or most) of the values are very near to the average (the true score), this
distribution will have a small standard deviation; if on the contrary, many values are far away from the
average, the standard deviation will become large. So the standard deviation of the private distribution
gives an indication of atypical error. This standard deviation is called the standard error of measure-
ment.

There is a strong relation between the standard error of measurement and the reliability of the test: the
standard error of measurement is the standard deviation of the observed scores (in the population)
multiplied by the square root of one minus the reliability.

The standard error of measurement can be used to define confidence intervals for the true score. It is
instructive to look at examples of such confidence intervalsto learn about the relative merits of test-
ing. Even with ardliability as high as 0.96, the 90% confidence interval for the true scoreislarger than
half a standard deviation. Details are discussed in Section C.9.

Decisions on individuals are sometimes based on atest score, for instance an examination score. One
should realize that such decisions are of necessity based on observed test scores, which contain an un-
known measurement error. Thisimplies that able candidates may fail on an examination because of a
negative measurement error, and weak candidates may succeed because of a positive error. Thisleads
to wrong (unintended) classifications. The percentage of such erroneous classifications depends
strongly on the reliability of the test. Eveniif it isas high as 0.9, the percentage of wrong classifica-
tions can be substantial.

Kéeley'sformula. Sometimes an estimate of the true score is needed. The best known estimateis

computed using the famous formula by Kelley. The result of this formulais a compromise between the
observed score and the population mean of the scores. A compromise means aweighted sum; the
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weight of the observed score is the reliability of the test, the weight for the population mean is one mi-
nus the reliability. Suppose X = 112 and the population mean is 100; the reliability equals 0.88. Kel-
ley’s estimate of the true scoreis 112x0.88 +100 % (1 —0.88) =110.56. Notice that the estimate is

closer to the population mean than is the observed score. Thisis known as ‘ shrinkage’. This estimate
can beinterpreted as follows: it is the average true score of all peoplein the population having an ob-
served score of 112. If John’s observed score happensto be 112, we cannot infer from thisthat his
true score is exactly 110.56, i.e., the estimate a so contains an error. This error is called the estimation
error, and its standard deviation is called the standard error of estimation. It is smaller than the stan-
dard error of measurement.

Theoretical results.

There are three important results which are useful in the discussion of external validation. One can
conceive test results as measurements that are polluted in some way by measurement error. It may be
interesting to know as precisely as possible what the results would be if one could measure without
measurement errors, i.e., the resultsin the ideal case where the observed scores are equal to the true
scores. These are the results: (details can be found in Section C.10)

1. Thecorrelation between observed scores and true scores is the square root of the reliability.

2. The correlation between the observed scores on two testsis ‘ attenuated’ (lowered) by the unreli-
ability of the two tests. The correlation between the true scores on both tests equals the correlation
between the observed scores divided by the square root of the product of their reliabilities. The
corresponding formulais called the correction for attenuation.

3. If two tests really measure the same concept, the correlation between the true scores of both tests
should equal one. If thisisthe case, the tests are called congeneric. But the correlation between
the observed scores will be attenuated by their unreliability. If two tests are congeneric, the corre-
lation between the observed scoresis equal to the square root of the product of their reliabilities.

Population dependency

In the discussion on the p-values, it was stressed that it is meaningless to speak about the p-value of an
item, because there is always a reference (explicitly or implicitly) to a certain population. The same
argument appliesto all item- and test-indices that are used in Classical Test Theory. In particular it
applies to the concept of reliability. The reliability of atest is acharacteristic of the test scoresin some
population. The same test can have a high reliability in some population and a very low one in another
population. Here is an example. Suppose atest is used as an entrance test to the university, and assume
it has areliability of .85 in the population of candidates. This very same test will have alower riabil-
ity in the population of first year students at the university, because this population is more homoge-
neous with respect to true score than the population of candidates, i.e. the variance of the true scores at
the university will be smaller than in the population of candidates. Or more generally, the more homo-
geneous the population (with respect to true score), the lower the reliability will be. But, of course, this
is not the only reason why the reliability of atest can be low. Soppy items with ambiguous scoring
rules will usually lead to low reliability, and one cannot use the homogeneity of the population as an
excuse for the bad quality of the test.

C.3. The accuracy of p-values

A good method of getting an impression of a p-value of anitem isto construct confidence intervals.
A p-vaueis atheoretical quantity which applies to the population, and which one usually estimates by
a corresponding quantity in the sample. If the p-value of an item in the population is 0.75, say, it isal-
most sure that one will not find a proportion correct of 0.75 in the sample. But in general, we do not
know the population value, we only observe a proportion correct in the sample. The problem of infer-
ential gatisticsisto make clear what one can say about the population value on the basis of a sample
value. To thisend, one usually constructs confidence intervals. In what follows, the theory of confi-
denceintervalsis summarized and a practical formulafor constructing intervalsis given.
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We represent the unknown p-value in the population by the Greek letter 77 the proportion one can ob-
servein asampleis denoted as p. The observed proportion is caled arandom variable, because it can
assume different valuesin different samples.

1. Assume we could draw avery great number of samples, all independent of each other, and all of
the same size, n. In each sample we can compute the observed p-value, and we can construct a his-
togram with these p-values. From theoretica statistics we can tell interesting things about this his-
togram:

a. Itsaverage equals the unknown value 7z
b. Itsstandard deviation equals /77(1— 7))/ n; this standard deviation is called the standard

error of the random variable p;
c. Theform of the histogram looks very much like the graph of the normal distribution, and
the similarity is more striking for large n than for small n.

2. Of course, we do not draw many samples, we usualy draw a single one, but from the theoretical
results we can say that the p-value we will observe will, with a probability of 90% liein an inter-
val from the mean (73 minus 1.645 times the standard deviation to the mean plus 1.645 times the
standard deviation. The value of 1.645 isto be found in published tables of the normal distribu-
tion. If we want a 95% interval, we have to replace 1.645 by 1.96, and for a 99% interval, we use
2.58.

3. We expressthe preceding paragraph by means of aformula:

P[ﬂ—1.645 /@ < p< m+1.645 /@J =0.9 (c1)

4. The expression between parentheses in the preceding formulais caled an event (p liesin some
interval). The whole formulareads as: the probability of this event is 0.9 But we can replace this
event by an equivalent event. We do thisin two steps: the first step concentrates on thefirst ine-
quality, where we move the term with the square root to the other side of the inequality sign:

T—1.645 /@ <Sp & < p+1.645‘/$

and, in the second step (concentrating on the second inequality in formula (c1)) by asimilar move

we get:
p<7r+1645/”(1 - p-1645 ’(1 L

and combining the two right-hand sides gives

p- 1645/ ) < < p+1.645 ’ﬂ 4

and this event reads as: the population value 77is embraced by two values which will vary from
sample to sample, because the observed p-value is arandom variable. And since we work with
equivalent events, we can say that

P[ p-1.645 /”(1—;”) <7< p+1.645 /@j =0.9 (c2)

5. It deserves some attention to understand well the equivalence of (c1) and (c2) and the differencein
wording of the two statements. In (c1) we say that the event isthat the value of arandom variable
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(p) will lie between two fixed values; in (c2) we say (equivalently) that the fixed population value
(73 will be embraced by two variable bounds.

6. Thereis, however, afurther problem with formula (c2): the two bounds depend on the variable p,
but also on the unknown value of 7z In practice, then, one replaces 7rby the observed value p un-
der the square root sign, giving a practical formula:

P[ p-1.645 /@ <7< p+1645 /@j =0.9 (c3)

7. Hereisasimple example. Suppose p = 0.51 and n = 100. Then, \/0.51(1— 0.51)/100 = 0.04999
(=0.05), and using these values in (c3), we find that

P(0.51-1.645x0.05 < 77 <0.51 +1.645 x0.05)
= P(0.428< 1<0.592) =0.9

8. Notice that the observed p-value (0.51) lies precisely in the middle of the defined interval, or, as
one says, the confidence interval is symmetric around the observed p-value. If the observed p-
valueisaround 0.5, thisis reasonable. But now, suppose that the observed p-valueis as high as
0.95, n=100 and we want a99% confidenceinterval. The standard error of p is now approximated

by \/0.95(1— 0.95)/100 =0.0218 and 2.58%0.0218 =0.056 so that we find

P(0.894 < 77<1.006) = 0.99

but the upper bound of the confidence interval islarger than 1, while we know that 77can not be
larger than one. Moreover, with very high observed p-values, we would rather believe that the
population value is smaller than that it is larger than the observed value. But this asks for an
asymmetric interval, for which we need another formula. Here,is one which looks complicated
but which gives nice results in many cases (Hays, 1977, p. 3799):

n p+2_2+ pa-p) , 2
n+ z° 2n n 4n?

In the formula, z stands for the value from the tables of the normal distribution: 1.645 for a 90%
interval; 1.96 for a 95% and 2.58 for a99% interval. The sign ‘+’ must be replaced by a“+’ to
yield the upper bound and by a‘-* to find the lower bound of the interval. We apply thisto the
preceding example (2.58% = 6.656), finding

100 {0.95+ 6656 , , o \/0.95x0.05 ,_6.656 }

100+6.656 200 100 4x100°
=10 [0.983+2.58x0.0253]
106.656

which gives 0.860 as lower bound and 0.983 as upper bound. Notice that the observed p-value of
0.95 is much closer to the upper bound than to the lower bound.

! Hays, W.L., Statistics for the social sciences. London: Holt, Rinehart and Winston, 19772
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C.4. Partial credit items and p-values

A binary item is an item where the score can assume only two values. zero for an incorrect and one for
a correct response. A partial credit item is an item where the score can range from zero to a certain
maximum that is larger than one, and where all intermediate (whole numbered) scores can be obtained
as ‘partia credits . The smplest form is where one gets two points for a perfect response, zero points
for atotally wrong answer and one point for an answer that is neither totally wrong nor totally correct.

The (observed) p-value of abinary item isthe proportion of test takersin the sample having the item
correct. When one tries to generalize the definition of the p-value for binary items to partial credit
items, one runs into trouble, because the notion of ‘correct’ becomes ambiguousin this case. Thereis,
however, a convenient way to look at p-values which easily generalizes to partial credit items, namely,
the notion of average relative (item) score. For binary itemsthisisillustrated in Table C.1 with anu-
merical example and symbolically.

Table C.1 The observed p-value as average score

example symbolically
score frequency proportion frequency  proportion
0 189 0.30 N, 1-p
1 441 0.70 N, s}
total 630 1 N, 1

The average score on thisitem is computed as

189x0+441x1 _ 189 441 441
= x0+ x1= =0.7 =p,
630 630 630 630

So, in the case of a binary item, we see that the proportion correct or the average score mean the same
thing. Now we apply the same procedure to a partial credit item with a maximum score of 3. (See Ta-
bleC.2.)

Table C.2 The average item score for a partial credit item

example symbolically
score frequency proportion frequency  proportion
0 126 0.20 N, Po
1 189 0.30 N, P,
2 252 0.40 N., P,
3 63 0.10 N, Ps
total 630 1 N, 1

It is easily checked that the average score in thiscaseis

126x0+189 x1 +252 x2 +63 X3 _
630

14

Asan index of difficulty this average is not very useful, because we have to remember that the maxi-
mum score for thisitemis 3. Therefore, the average scoreis divided by the maximum score (yielding a
relative average score) of 1.4/3 = 0.467, i.e. 46.7% of the maximum score. The relative average score
is (by definition) a number between zero and one. Notice that with binary items, average score and
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relative average score coincide, because the maximum score is one. If the term p-value is used with
partia credit items, it refers to the average relative score.

C.5. Corrdations between distractors and test score

To compute a correlation, one needs two series of scores. To compute the item test correlation, for ex-
ample, one scoreisthe test score, and the other score istheitem score. The latter equals oneif the an-
swer is correct and zero if the answer isincorrect. The correlation is computed using the usua formula
for a product-moment correlation (Pearson correlation). The computation will only fail if the observed
p-value of theitem is either zero or one, because in these cases the variance of the item scoreis zero.

To compute the correlation between a distractor and the test score, one must r ecode the answers given
by the test takers. Suppose the item under study is a multiple choice item with four aternatives (A, B,
C and D), alternative B being the correct answer: this means that an item score of oneis given to every
test taker who chose B, and a zero to the others. To compute the correlation between test score and
distractor A, one hasto create a new binary variable, giving a‘score’ of oneto every test taker who
chose A, and zero to the others. The correlation looked for is the correlation between this new variable
and the test score. To compute the correlation between test score and distractors C and D, one should
proceed in a similar way. When using multiple choice items, it is good practice to compute the correla
tions between distractors and test score. In well constructed items, these correlations should be nega-
tive.

This application also illustrates the need of storing in some way the origina observations. If one stores
only the item scores (zeros and ones), it is not possible to compute the correl ation between distractor
and item score, because it isimpossible to know which one of the distractors has been chosen from the
mere knowledge that the answer was hot correct.

C.6. Moreon graphical item analysis: DIF

The discussion on graphical item analysisis a good opportunity to introduce a concept that has re-
ceived alot of attention in the last two decennia, the so-called Differential Item Functioning (DIF).
Theideal of fair testing requires that an item ‘behaves similarly’ in distinct populations, for example
in the populations of boys and girls. It is, however, not so easy to state what is meant or should be
meant by ‘similar behaviour’. One could claim, for example, that an item should be equally difficult in
the populations of boys and girls, but using such a definition will cause serioustrouble. It isawell es-
tablished fact that at the age of 12, girlstend to be less proficient in arithmetic than boys. If the diffi-
culty of theitem is operationalised by its p-value, it is to be expected that the p-value of atypical
arithmetic item will be lower in the girls’ population than in the boys' population. Thisillustrates
nicely the population dependence of the p-value. Usually this will hold for most or all itemsin an
arithmetic test. But if we stick to the requirement that to be fair each item should be equally difficult in
both populations, (and suppose an admissible test is required to have this property, and that only items
with this property are included in the test), then by necessity we will find that on a‘fair’ test, the aver-
age score of boys and girlsisthe same. But this approach impliesthat all differences are unfair, be-
cause it can be applied to any pair of populations, including the populations consisting of myself and
my neighbour respectively.

So we need amore qualified definition of DIF, one that |eaves room for differences between popula-
tions. Such a definition isformulated as a conditional statement. We apply it to the example of boys
and girls. An item shows no DIF if in the (conceptual) population of boys with an arbitrary but fixed
level of proficiency and the (conceptual) population of girls with the same level of proficiency, the p-
values of the item are identical. Notice that this identity of the two p-values must hold at each level of
proficiency. Stated more simply: absence of DIF means that the item should be equally difficult for
boys and girls with the same level of proficiency.
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In practice of course, we do not know the exact proficiency level of any test taker, but we can use the
test score as a proxy. If, as before, test takers are grouped in anumber of groups (of reasonable size),
we can plot the observed p-values in each group for boys and girls separately. In Figure C.2, two ex-
amples are given from a mathematics examination. The legend refersto girls (Sg = 1; Sg stands for
subgroup) and boys (Sg = 2).

DIF Item 7 MKOO7 DIF Item 1 MKOO1
1.0+ 1.0 0.96
0.91 s
0.83 0.84
0.8 0'73 0.8 0.77
, g 3 , 0B op o+

s S o8
= . 4591 = 4 Sg1l
8 = (n=300) 8 ] (n=300)
£ 08y 2 04
1 = Sg 2 | m Sg 2
(n=300) (n=300)
0.2 0.2
00 T T 1 00 T T 1
1 2 3 4 1 2 3 4
Score groups Score groups
All items All items

Figure C.2. Examples of DIF analysis

For item 7, there is no evidence of DIF: the p-values for boys and girls are very similar in each group
(remember that these p-values contain an estimation error; so we cannot expect them to be identical in
asample). For item 1, on the other hand, there is clear evidence of DIF: theitem is substantially harder
in each girls' group than in the corresponding boys' group. Although there exist techniques for testing
these differences statistically, in a clear-cut case as this, a plot is convincing enough. Scanning similar
plotsfor al itemsin the test will reveal immediately important DIF as with item 1.

Although gender is commonly used as an example to explain and illustrate DIF, it is by no means the
only variable where DIF can be investigated. In the United States of America cultural fairness of tests
is often a strong requirement, and ethnical and racial background is often used as the contrasting vari-
ablein DIF-studies. In the general domain of achievement tests, an important variable to be used in
DIF studiesis the method of instruction used: it may be the case that some items turn out to be easier
when the content matter of the test has been taught by method A, say, rather than by method B. A de-
tailed DIF analysis may be revealing in such a context. Another highly relevant example is the use of
mother tongue as the DIF-variable in case atest is administered to groups with different linguistic
backgrounds, like the TOEFL.

C.7. A graphical aid in constructing parallel forms

The construction of parallel forms can occur in different situations:

» A pardlel form for an existing (and already used) test has to be constructed;

» Two (or even more) parallel forms are to be constructed from scratch;

* An existing test has to be split in two halves which are parallel (to use the split half method for
estimating the reliability).

In all these cases a ssimple method can be used to construct the parallel formsin agraphical way. The
ideaisto construct two test forms which are approximately strictly parallel. This means that each
item in one form has a twin in the other form with (approximately) the same psychometric qualities. In
the framework of CTT one triesto have a match on two qualities: the difficulty and the discrimination,
which are usually operationalised by the p-value and the item-test (or item-rest) correlation.
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The starting point of the method is to construct a scatter diagram where each item is represented by a
point in the plane. The x-coordinate is the p-value of the item, the y-coordinate the item-test correla-
tion. The position of the item is symbolized by a (short) item label, such that items can easily be iden-
tified. An exampleisgivenin Figure C.3. Two items with graphical representation near each other
have approximately the same p-value and the same discrimination. In Figure C.3 pairs are represented
by lines connecting two item points. Pairs are formed such that the distance between the two item
pointsin each pair isasmall as possible.
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Figure C.3 Graphical construction of parallel forms

To construct the approximate parallel forms, the two items belonging to a pair should be assigned to

the forms at random. There are a number of remarks to be made at this point:

1 If dataare available on all the items from the same sample (and this will be the case when splitting
an existing test in parallel halves, or in the construction of two paralel forms from scratch), it is
always wise to check the extent to which the formation of parallel forms has been successful. In
the two parallel forms the p-values of the items will not be different from their values when con-
sidering all items as belonging to a single test, but usually the item-test correlations will change.

2 If data are collected on two different samples (which may be the case if a new parallel form to an
existing test has to be constructed), one should be very careful in using statistically equivalent
samples. Both samples should be representative for the same target population.

3 If aparale form for an existing test hasto be constructed, it is wise to have more items to select
from than what is strictly needed in the test. If the existing test consists of 35 items, it is advisable
to have at least 50 items for the new test, such that 35 pairs can be formed, leaving 15 or more
items unused. If one does not have such a provision, it may appear that it is not possible to con-
struct a parallel form, because, for example, the new items are on average easier than the old ones.

4 The construction of the two parallel forms, as exemplified in Figure C.3 isdone ‘by hand’, and it
is not guaranteed that the proposed solution in the figure is the best possible. Thisis not abig
problem, however: the aimis to construct two forms which are reasonably in balance with respect
to the two psychometric qualities of the items. But it may appear that by proceeding in this way
the two test forms show a quite strong unbalance in other respects, for example, with respect to
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content. It is not the case that psychometric balance has priority to content. The ultimate decision
isin the hands of the test constructor, and the method exemplified in Figure C.3 isonly meant as a
convenient tool in the construction of the parallel forms. One can extend control by very simple
means, just as using a different colour of the item labels to distinguish between open ended and
multiple choice items, or underlining and italicising to distinguish different content categories, and
try to form pairs where content category, item format, p-value and discrimination are as Smilar as
possible.

C.8 The Spearman-Brown formula

There exists a powerful formulato control the test reliability, known as the Spearman-Brown formula.
It says how the reliability changes as the test islengthened (or shortened). Suppose a prototype of a
test has been constructed which contains twenty items; this number of itemsisin some way considered
as astandard length. So, we could say that it has the length of 1. The reliability of this test will be de-

noted by po(1) for short. The Spearman-Brown formula can tell us what the reliability of the test

would be if it contained forty items, that is, if it had the length of 2. And more generdly, it tellsus

what the relation is between the reliabilities of atest of length 1 and atest of length k , where kisan

arbitrary positive number. Here is the formula:

pliy=— L0
+(k-1)p@

and hereis an example. Suppose the test of 20 items has areliability of 0.63, but the possibility exists
to extend the test to 30 items, i.e. to make thetest 1.5 times aslong isit actualy is. So, we have to ap-
ply the formulawith k =1.5 and p(1) =0.63, yielding

1.5x0.63

15)= -0.719
P = 5 <063

The formula can be applied also to see the effect of shortening the test. Suppose we can apply only a
test of 10 itemsinstead of 20, then k =10/20 =0.5 and applying the formula gives

p(05) = 02X083 455

1+(0.5-1) x0.63
Some users do not understand fully the meaning of ‘k’ in formula (10). It definitely does not denote
the number of items; it denotes the ratio of a new number of items to some reference number, usually
the number of itemsin an existing test. This latter number is then considered as the standard length
(length of 1). The effect of test lengthening (or shortening) can be displayed graphically by a number
of curves, asin Figure C.4.

reliability

0 20 40 60 80 100 120 140 160
number of items

Figure C.4 Graphs of the Spearman-Brown formula
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These graphs display a number of interesting characteristics:

1. All curveswill eventualy go to 1if the number of items is large enough.

2. Of course, many more curves can be produced. The curvesin Figure C.4 are just afew examples,
and were produced with 40 items as standard length.

3. All curves have the same feature: starting with a small number of items, and then adding progres-
sively more items, makes the curves grow rapidly at the start and more and more slowly asthe
number of itemsincreases. A nice exampleis offered by the second curve from below. With 20
items, the rdiability is (about) 0.40; adding 20 items causes an increase to 0.60, but adding an-
other 20 itemsis not sufficient to reach areliability of 0.70. Or, in short, adding items leads to a
modest gain but removing items causes agreat lossin reliability.

The Spearman-Brown formulais the most important practical tool to control the reliability of atest
under construction. Sometimes a certain reliability is set as a minimum reguirement for atest (in a cer-
tain population). One starts with the construction of the test, and the first analysis reveals that the tar-
get is not reached. Then one can use the Spearman-Brown formulato estimate the number of items
that must be added to reach the target. Here is an example. Assume that the target reliability of atestis
0.85. Assume that afirst analysisis done with aprovisional test of 25 items, which yields an (esti-
mated) reliability of 0.77. A very practical question then isto know how many items should be added
to reach the target. If we take 25 items as the standard length, then it must hold (by applying the
Spearman-Brown formula) that

kx0.77

T 1+ (k—1) x0.77
and this equation (with k unknown) can be solved to find k:

2 085X(A-0.77) oo
0.77x(1-0.85)

meaning that the test should have 1.693 times its present length, that is, contain 25x 1.693 =42.3
items. Asfractions of items do not exist, this means that we will need at least 43 items to reach the
target (42 will not be enough.). The preceding calculation leads to avery useful and practical formula:

K = ptafget (1_ pobs)
pobs (1 - Iotarga )

where p,, isthereliability one actually hasreached, and p,,, isthetarget reliability. (But again,

remember that the result k of the formulais not the number of items, but the factor with which the ac-
tual number has to be multiplied.)

We will end this section with an example of the popular saying: the sting isin thetail. Thereisabig
risk in applying the Spearman-Brown formula purely mechanically. The Spearman-Brown formulais
only valid under quite strict conditions (which can not be discussed in detail in this appendix). Sup-
pose one has to double the actual test length to reach the target reliability. If the provisional test con-
tains 25 items that are constructed in a careful and professiona way, one cannot hope to reach the tar-
get by adding 25 sloppy items, constructed in a hurry on a Sunday afternoon. More generally, one can
express the requirement for the validity of the formula by saying that the test should be lengthened ho-
mogeneoudly. This means the added items should be very comparable (as awhole) to theitems al-
ready present in many respects. the content coverage should be the same, the general level of difficulty
and discrimination, perhaps also the format (atest consisting of 25 essay questionsis not doubled ho-
mogeneously by adding 25 multiple choice questions.) All this of course cannot be controlled in full
detail, and that is why the Spearman-Brown formula, beautiful asit is, will only yield approximations
in practice.
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C.9 Confidenceintervalsfor thetrue score

We need some mathematical notation to express the relation between the standard error of measure-
ment and the reliability. The symbol X will be used to represent the observed test score, and the reli-
ability of X will be symbolized as Rel(X) . The standard deviation of the observed test scoresis de-

noted as SD(X) , and the standard error of measurement as SE(X) . The relation between the standard
error of measurement and reliability is given by the following formula:

SE(X) = SD(X)\1-Re(X)

The important fact about this formulais that we can compute the standard error of measurement from
observable quantities: the standard deviation of the observed scores and the reliability. We use awell-
known case as an example. In the use of intelligence tests, the scores (IQ) are expressed on ascae
such that (in awell defined population) the mean 1Q is 100 and the standard deviation is 15. Notice,
that these quantities refer to observed scores, not to true scores, and that the reliability of many intelli-
gence testsiswell above 0.9, but certainly not equal to one. In Table C.3, the standard error of meas-
urement is given for a number of cases.

Table C.3. Standard error of measurement with SD(X) =15

Reliability  SE(X)

0.85 5.81
0.88 5.20
0.91 4.50
0.94 3.67
0.97 2.60

These figures may come as a surprise, yet they are the result of asimple calculation. Thetableisim-
portant, asit should dissuade us from statements like “the reliability is as high as 0.97, which is virtu-
aly one’ and then proceed asif it isreally equal to one. Let us see what we can say about John's 1Q, if
we have found that his observed IQ equals 112, and the reliability of the 1Q-test isindeed as high as
0.97.

Since our measurement is not perfect, but contains a measurement error, the best we can hopeisto
define aninterval that contains John'sreal 1Q (to be understood as his true score). But here a new
problem crops up: Classical Test Theory does not say anything about the shape of John’s private error
distribution. We cannot say that it is symmetric, and afortiori we cannot be sure that it has the form of
anormal distribution. Although it is possible in statistics to define confidence intervals without any
additional assumption about the shape of the distribution, these intervals are usually disappointingly
large. We can narrow these, but at the price of extra assumptions. Commonly, it is assumed that the
error distribution is normal. If we buy this assumption, we can define a confidence interval in the usual
way (see Section C.3), which as amathematical expression looks like this:

Prob(X,,, ~1.645xSE(X) <7,,,, < X,,,, +1.645xSE(X)) =0.90

or, inwords, thereis a probability of 90% that the constructed symmetric interval true score will con-
tain the true score; the lower bound of the interval is the observed score minus 1.645 times the stan-
dard error of measurement and the upper bound is the observed score plus 1.645 times SD(E). Replac-
ing the symbols by the numbers we know, we find

Prob(112-1.645%x2.6 <7, <112 +1.645 x2.6) =
Prob(107.7< 7,,,, <116.3) =0.90
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This means that the 90% confidenceinterval is 116.3 — 107.7 = 8.6 1Q points, which is more than half
a standard deviation of the observed scores. Of course, we can apply a similar procedure not only to
John but to an arbitrary member of the population. But if we do so, we have to remember that in 10%
of the cases, the true score will lie outside the thus defined interval. So we see clearly that we cannot
treat areliability of 0.97 asbeing ‘virtualy one'.

C.10 Important theoretical results

Thetheoretical definition of reliability (see Section C.1) isthe ratio of true score and observed score
variance. Thisratio cannot be computed in practice, because the true score variance is not known. If,
we have atest which is parallel to acertain X (and which is commonly denoted as X’), then the reli-
ability can be computed because it istheoretically shown that the correlation between two parallel tests
equals the reliability of the test (and of its parallel form aswell). Thereis, however, another important
theoretical concept which is closdly related to the reliability, namely, the correlation (in the target
population) between observed and true scores. Thisrelation is presented together with the earlier re-
sults in the following composite equation:

ReI<X)=\\,’::—(”X))=p(x,X') = 27(X.,T)

Notice that the reliability is the squared correlation between observed and true score, and it follows
immediately that

o(X,T) =/Rel(X) (C.2)

Thisis an important theoretical result. One might wish to be able to measure without measurement
error, but in language testing, asin many other areas, thisis practically not possible, and all one can
obtain isfallible results: the observed outcomes of a measurement procedure are in error. The above
formula expresses directly the correlation between observed values and the theoretical construct of
interest.

Sincetherdliability of atest isanumber between zero and one, the correlation between observed and
true score is larger than the reliability (it isequal only in case the reliability is zero or one). In Table
C.4, some examples are displayed.

Table C.4. Therelation between reliability and o(X,T)

Rel(X)  o(X,T)

0.2 0.45
04 0.63
0.6 0.77
0.8 0.89
0.9 0.95

This relation has important implications for the discussion on validity. An important aspect of validity
concerns the relation between the test scores and some other variable, which in many casesisalso a
test score. But both test scores arein error, and these measurement errors will tend to attenuate (i.e.,
lower) the correlation. 1deally one would like to know the correlation between the true scores on both
tests. There exists afamous formulafor this correlation, but we need some extension of the notation to
write it down compactly. The two observed test scores will be denoted by X and Y and their corre-
sponding true scores are denoted by Ty and Ty respectively. The formulais:
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(T, T,y =——PXY) (C2)

JRe(X) Rel(Y)

or in words, the correlation between the true scores is the correl ation between the observed scores di-
vided by the square root of the product of the reliabilities. Since reliabilities are generally smaller than
one, the denominator of the fraction will also be smaller than one, whence it follows that the correl a-
tion between true scoresis larger than the correlations between observed values, or, as one usualy
says, the correlation between observed scoresis attenuated by measurement error. The formula isalso
called ‘the correction for attenuation’. (Notice that the formula does not apply when one or both reli-
abilities are zero, but in such a case the correlation between the true scoresis also zero.)

Thisformula plays an important role in discussions about the construct validity of atest. If two tests
measure the same concept, one usually finds that they correlate less than one, and this can be ex-
plained by the attenuation formula: the correlation is lowered by the fact that both test scores contain
measurement error. But if X and Y really measure the same concept, then the correlation between their
true scores should be equal to one, i.e., they should be congeneric. Replacing the left hand side of the
attenuation formula by 1, we find immediately that

X and Y are congeneric = p(X,Y)=./Re(X)Re(Y)

i.e., if X andY are congeneric then their correlation should be equal to the square root of the product
of their reliabilities.

In practice, one cannot use formula (C.2) as its stands, because this formularefers to popula
tion values, and in practical situations one has to use sample estimates for the correlation and
the two reliabilities, and because of the fraction in the formula, the result can be a number that
is larger than one, which of course cannot be a correlation. The most notorious pitfall, how-
ever, with this formulais when one uses alower bound to the reliabities, such as Cronbach's
apha. If tests are heterogeneous, this coefficient can be substantially lower than the reliabil-
ity, and using these as estimates of the reliability in the formula, will make its denominator
too small, and as aresult the result of the fraction too high, giving in some cases results far
exceeding one, or results near one, even if the two tests are not congeneric at all.
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