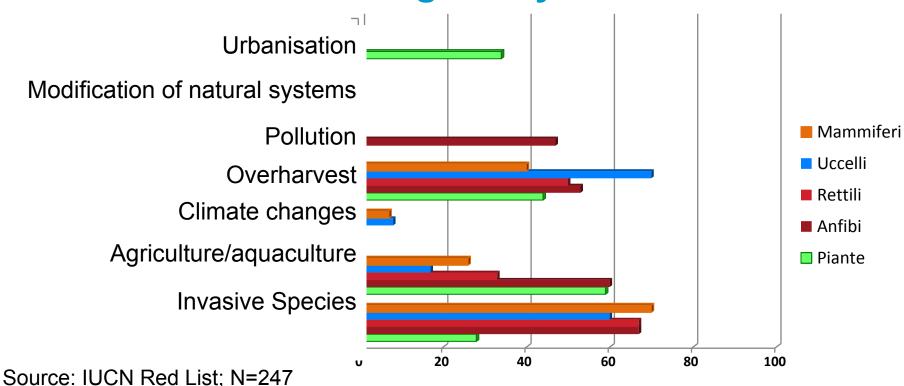
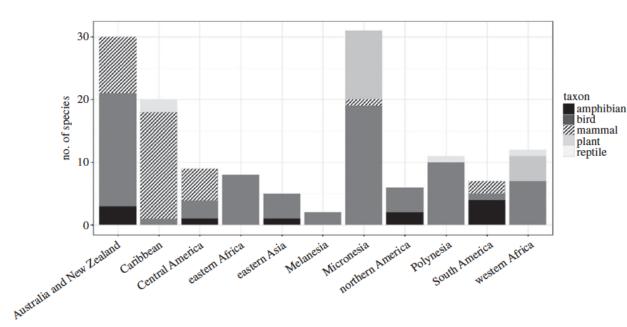


Eradication on islands. Is it effective? Does it deliver conservation gains? Is it worth the cost?


Piero Genovesi Chair IUCN SSC Invasive Species Specialist Group

Workshop on experiences on control and eradication of invasive alien species on islands Funchal 1st June 2017

MAJOR DRIVER OF BIODIVERSITY LOSS Causes of extinctions globally



Bellård et al. 2016 Alien species as a driver of recent extinctions. Biol. Lett.

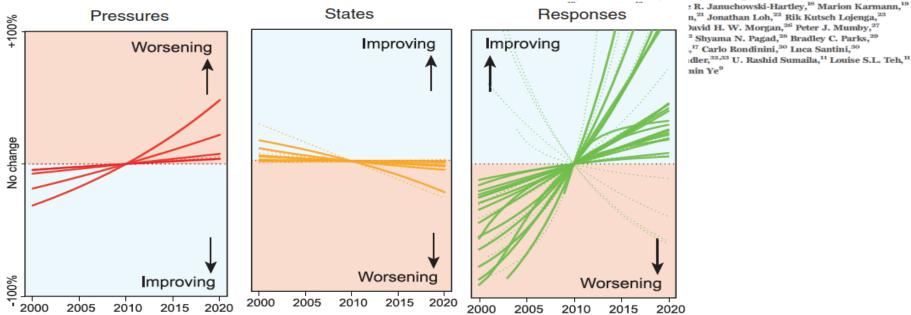
MAJOR DRIVER OF BIODIVERSITY LOSS Especially on islands

 Islands occupy ~5.5% of the globe but contain >15% of terrestrial species, 61% of all recently extinct species, and 37% of all critically endangered species.

Source: IUCN Red List; N=134

Bellård et al. 2016 Alien species as a driver of recent extinctions. Biol. Lett.

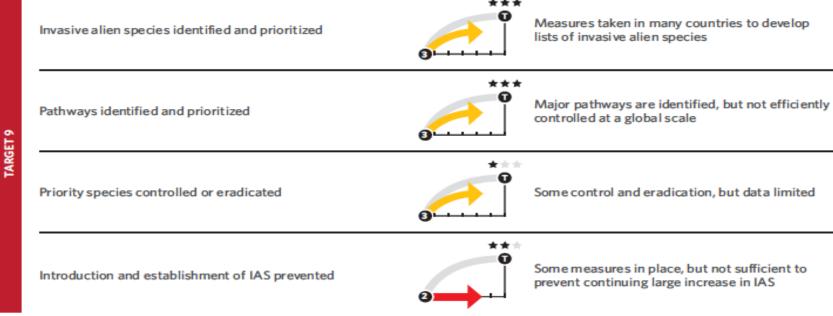
Where are we?

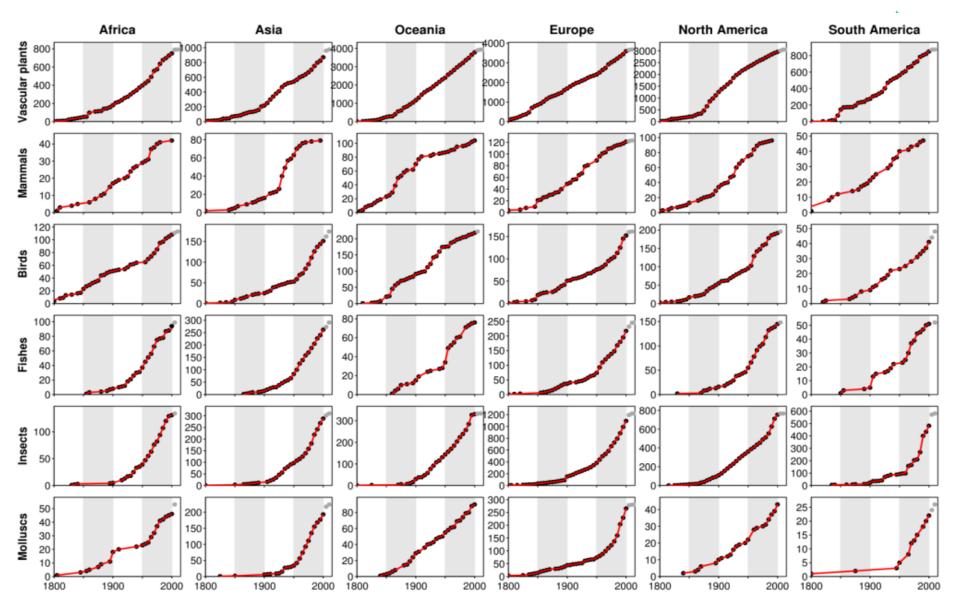

SCIENCE sciencemag.org 10 OCTOBER

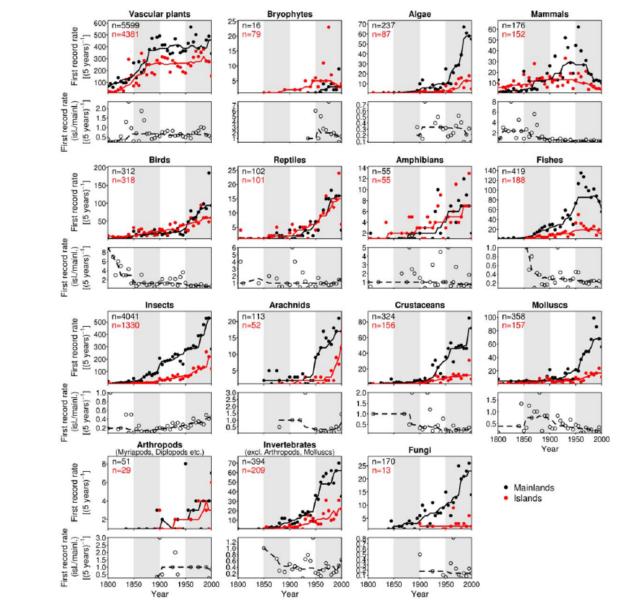
10 OCTOBER 2014 • VOL 346 ISSUE 6206

CONSERVATION TARGETS

A mid-term analysis of progress toward international biodiversity targets

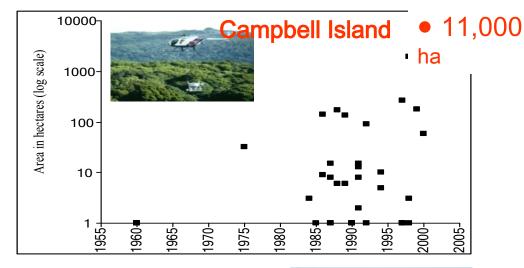

Derek P. Tittensor,^{1,2*} Matt Walpole,¹ Samantha L. L. Hill,¹ Daniel G. Boyce,^{3,4} Gregory L. Britten,² Neil D. Burgess,^{1,5} Stuart H. M. Butchart,⁶ Paul W. Leadley,⁷ Eugenie C. Regan,¹ Rob Alkemade,⁸ Roswitha Baumung,⁹ Céline Bellard,⁷ Lex Bouwman,^{8,10} Nadine J. Bowles-Newark,¹ Anna M. Chenery,¹ William W. L. Cheung,¹¹ Villy Christensen,¹¹ H. David Cooper,¹² Annabel R. Crowther,¹ Matthew J. R. Dixon,¹ Alessandro Galli,¹³ Valérie Gaveau,¹⁴ Richard D. Gregory,¹⁵ Nicolas L. Gutierrez,¹⁶





Where are we?

Keitt et al. 2010	947
Genovesi & Carnevali in press	124
Abstracts 2010 conference	19
Turning the Tide (IUCN 2002)	10
California weed programme	16
Ant eradications (B. Hoffman pubbl, unpubbl)	13
TOTAL	1129


86% successful (n=911; 819 vs. 93)
97.07% on islands (n= 1,129; 1096 vs. 33)
94.6% vertebrates (n= 1,119; 1059 vs. 60)

TECHNICAL ADVANCES

- Larger areas
- Multi-species eradications
- Reduced undesired impacts
- Islands/mainland
- Plants, invertebrates
- More information on positive outcomes

CONCEPTS AND QUESTIONS

Re-evaluating eradication of nuisance species: invasion of the tunicate, *Ciona intestinalis*

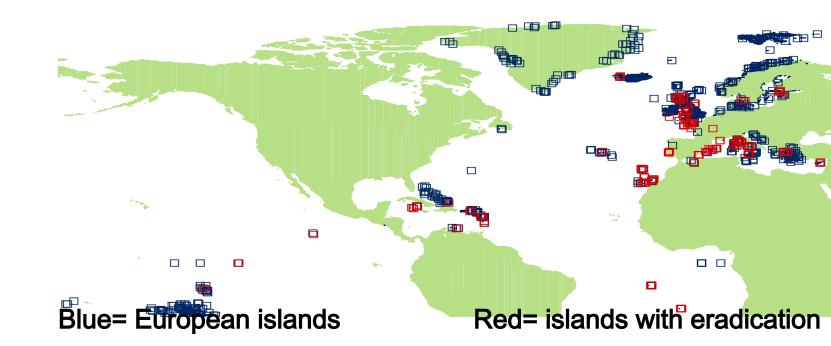
Paul K Edwards' and Brian Leung

Tradication is an important concept in the management of biological invasions, but it is rarely considered in pactice. This may be because managers commonly work with incomplete that and little on a partical time. Here, we argue that eradication is not always adequately considered, and we develop a framework for equal assessment of its feasibility, depined limited data. This quantifactive model offers citratic to explain of the target area. This framework is applied to a recent tuniester (*Chum interchards)* instantion around Pittue Chard and the second relative transmission of the second second second to harvester of blue muscle analysis, could require only a $\pm 10\%$ charus or starces to constitute a worthwhile risk. Fuer Gel Issues 2005, 76:4013-109027018

TECHNICAL ADVANCES

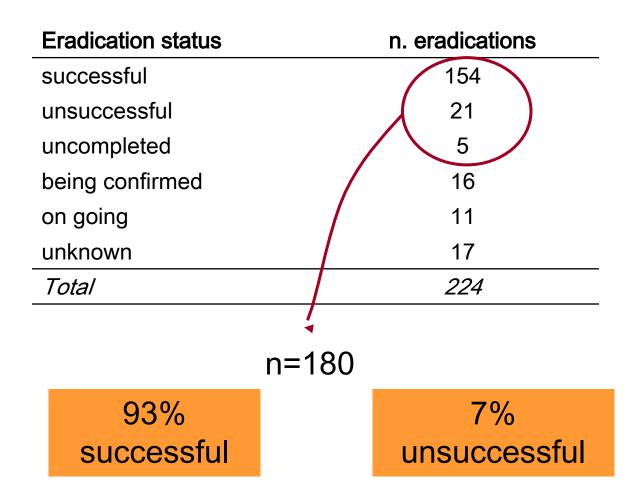
Ant eradications

- Invertebrates generally considered not eradicable, with few exception
- Several attempts to eradicate ants from US and Australia not successful, but significantly increased technical basis



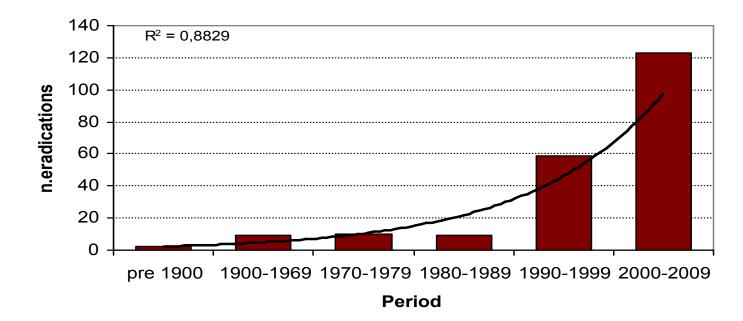
EUROPEAN DATA

224 campaigns recorded on 170 islands (belonging to 12 countries).



EUROPEAN DATA

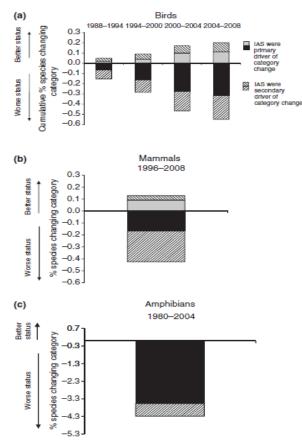
Region	n. eradications
North Atlantic Ocean	50
South Atlantic Ocean	42
Mediterranean sea	45
Macaronesia	12
Caribbean sea	24
Pacific Ocean	35
Indian Ocean	16
Total	224



Rapidly increasing

58% of successful eradications in 2000-2009

Diversity and Distributions, (Diversity Distrib.) (2010) 16, 95–108



Global indicators of biological invasion: species numbers, biodiversity impact and policy responses

Melodie A. McGeoch^{1*}, Stuart H. M. Butchart², Dian Spear³, Elrike Marais³, Elizabeth J. Kleynhans³, Andy Symes², Janice Chanson⁴ and Michael Hoffmann^{5,6}

Eradication one of the very few examples of effective action to reduce biodiversity loss

 Conservation status of 11 birds, 5 mammals and 1 amphibian improved because of eradication of invasive species

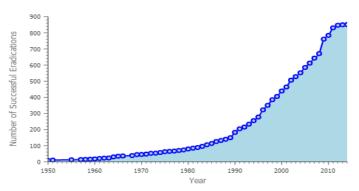
Invasive mammal eradication on islands results in substantial conservation gains

Holly P. Jones^{a,b,1}, Nick D. Holmes^c, Stuart H. M. Butchart^d, Bernie R. Tershy^e, Peter J. Kappes^f, Ilse Corkery^g, Alfonso Aguirre-Muñoz^h, Doug P. Armstrongⁱ, Elsa Bonnaud^j, Andrew A. Burbidge^k, Karl Campbell^{c,I}, Franck Courchamp^j, Philip E. Cowan^m, Richard J. Cuthbert^{n,o}, Steve Ebbert^P, Piero Genovesi^{q,r}, Gregg R. Howald^c, Bradford S. Keitt^c, Stephen W. Kress^s, Colin M. Miskelly^t, Steffen Oppelⁿ, Sally Poncet^u, Mark J. Rauzon^v, Gérard Rocamora^{w,x}, James C. Russell^{y,z}, Araceli Samaniego-Herrera^h, Philip J. Seddon^{aa}, Dena R. Spatz^{c,e}, David R. Towns^{bb,cc}, and Donald A. Croll^e

^aDepartment of Biological Sciences, Northern Illinois University, DeKalb, IL 60115; ^bInstitute for the Study of th Northern Illinois University, DeKalb, IL 60115; ⁶Island Conservation, Santa Cruz, CA 95060; ^dBirdLife Internation ^eEcology & Evolutionary Biology Department, Institute of Marine Sciences, University of California, Santa Cruz, Wildlife Research Unit, Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331; ⁹Zo Corcaigh, Ireland; ^hGrupo de Ecologia y Conservación de Islas, A.C., Ensenada, C.P. 22800, Baja California, Mexi Natural Resources, Massey University, Palmerston North 4474, New Zealand; ¹Laboratory of Ecology Systematics 91405, France; ^kPrivate address, Floreat, WA 6014, Australia; ¹School of Geography, Planning and Environment Queensland, St Lucia, QLD 4072, Australia; ^mLandcare Research, Lincoln 7608, New Zealand; ⁿCentre for Corse Protection of Birds, Cambridge CB2 3QZ, United Kingdom; ^oWildlife Conservation Society, Goroka, Eastern Highl

Home > Conservation Silver Bullet?

Conservation Silver Bullet?


Seychelles Magpie-rabin benefited fram invasive speces eradication on its island hame image © Simon Stirrup

PNAS

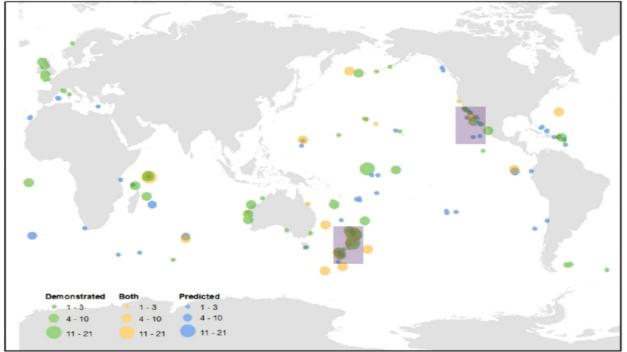
IAS eradications (2014)

Table 1. Numbers of species with demonstrated benefits from invasive mammal eradications

Animal	Resident population recovery	Unassisted colonization	Unassisted recolonization	Reintroduction	Conservation introduction
Invertebrate	5 (5)	0	0	16 (29)	1 (1)
Landbird	35 (50)	12 (12)	16 (33)	36 (122)	11 (17)
Seabird	41 (73)	22 (28)	50 (89)	9 (12)	0
Mammal	3 (11)	0	1 (1)	7 (7)	4 (5)
Reptile	31 (55)	0	0	22 (44)	2 (2)

Numbers of populations are shown in parentheses.

 596 populations of 236 native species on 181 islands benefitted from eradications



6%

of all highly threatened terrestrial vertebrates have

benefited

from island IAS mammal eradications Islands with native fauna populations with demonstrated and/or predicted benefits from invasive mammal eradications. Dot size indicates numbers of populations.

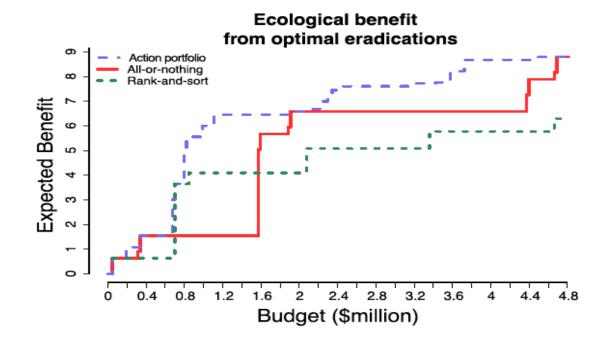
Eradication of ship rats from Montecristo Island

- 1080 ha (largest island eradicated from Ship rats; Hermite isl. Australia = 1022 ha)
- Hosts 3-10% of global population of Cory's shearwater (*Puffinus yelkouan*)
- Reproductive success from 0 to 75-95%

 The New Zealand storm-petrel, thought extinct for more than 150 years, was recently found breeding on Little Barrier Island following cat and rat eradication

- Rat eradication on Great Bird Island, which houses the only population of world's rarest snake, the Critically Endangered Antiguan racer (Alsophis antiguae)
- Antiguan Racer population increasing 20-fold on four islands

 Following rat eradication on Langara Island in Canada, the population of ancient murrelets (*Synthliboramphus antiquus*) was estimated to double, and Cassin's auklets (*Ptychoramphus aleuticus*) re-colonized the island



EFFECTIVE CONSERVATION ACTION

Helmstedt, K.J. et al., 2015. Journal of Applied Ecology

SCALING UP TO MEET THE CHALLENGE

University of Dundee • South Georgia Heritage Trust